Hyperbolas - Exercises (Solutions) (6 pages; 10/9/19)

(1) Show that the equation of the tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point (*acosht*, *bsinht*) is

yasinht = xbcosht - ab

Solution

Using the parametric equations x = acosht & y = bsinht,

 $\frac{dx}{dt} = asinht & \frac{dy}{dt} = bcosht ,$ so that $\frac{dy}{dx} = \frac{bcosht}{asinht}$

and the equation of the tangent at (acosht, bsinht) is

$$\frac{y-bsinht}{x-acosht} = \frac{bcosht}{asinht}$$

and hence $yasinht - absinh^2t = xbcosht - abcosh^2t$,
so that $yasinht = xbcosht - ab$

(2) Given that the tangent in (C)(1) meets the asymptotes of the hyperbola at the points P & Q, show that the mid-point of P & Q is (*acosht*, *bsinht*).

Solution

The asymptotes of the hyperbola are $y = \pm \frac{b}{a}x$

From (1), the tangent to the hyperbola at (*acosht*, *bsinht*) meets the asymptote $y = \frac{b}{a}x$ at *P* (say), where *bxsinht* = *xbcosht* - *ab* and the asymptote $y = -\frac{b}{a}x$ at *Q* where

$$-bxsinht = xbcosht - ab$$

fmng.uk

so that *P* is the point $(\frac{a}{cosht-sinht}, \frac{b}{cosht-sinht})$ and *Q* is the point $(\frac{a}{cosht+sinht}, \frac{-b}{cosht+sinht})$

The mid-point of *P* & *Q* is therefore

$$\begin{pmatrix} \frac{1}{2} \left[\frac{a}{cosht-sinht} + \frac{a}{cosht+sinht} \right], \frac{1}{2} \left[\frac{b}{cosht-sinht} + \frac{-b}{cosht+sinht} \right] \end{pmatrix}$$

$$= \left(\frac{acosht}{cosh^{2}t-sinh^{2}t}, \frac{bsinht}{cosh^{2}t-sinh^{2}t} \right) = (acosht, bsinht), \text{ as required}$$

(3) In the case where b = a, find the area of the triangle *OPQ* (where *P* & *Q* are as in (C)(2), and *O* is the Origin).

Solution

The two asymptotes are at right angles to each other, so that the required area, $A = \frac{1}{2}OP.OQ$

Then
$$4A^2 = \left(\left(\frac{a}{cosht-sinht}\right)^2 + \left(\frac{a}{cosht-sinht}\right)^2\right)$$

 $\times \left(\left(\frac{a}{cosht+sinht}\right)^2 + \left(\frac{-a}{cosht+sinht}\right)^2\right)$
 $= \left(\frac{2a^2}{(cosht-sinht)^2}\right) \left(\frac{2a^2}{(cosht+sinht)^2}\right)$
 $= \frac{4a^4}{(cosh^2t-sinh^2t)^2} = 4a^4$

and therefore $A = a^2$

(4) The chord PQ, where P and Q are points on the rectangular hyperbola $xy = c^2$, has gradient 1. Show that the locus of the point of intersection of the tangents from P and Q is the line

y = -x. [Edx FP3 textbook, Ex. 2G, Q9]

Solution

Let *P* & *Q* be the points
$$(ct_1, \frac{c}{t_1}) \& (ct_2, \frac{c}{t_2})$$
, respectively.

As the gradient of PQ is 1, $\frac{\frac{c}{t_2} - \frac{c}{t_1}}{ct_2 - ct_1} = 1$, so that

$$\frac{1}{t_2} - \frac{1}{t_1} = t_2 - t_1$$
$$\Rightarrow \frac{t_1 - t_2}{t_1 t_2} = t_2 - t_1$$

 $\Rightarrow t_1 t_2 = -1$, as $t_1 \neq t_2$ (*P* & *Q* being distinct points)

The equation of the tangent from *P* is:

$$\frac{y - \frac{c}{t_1}}{x - ct_1} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} | t = t_1 \text{ , where } x = ct \text{ \& } y = \frac{c}{t}$$

so that $\frac{dy}{dt} = -\frac{c}{t^2} \& \frac{dx}{dt} = c$

and the equation of the tangent from P is

$$\frac{y - \frac{c}{t_1}}{x - ct_1} = \frac{\left(-\frac{c}{t_1^2}\right)}{c} \Rightarrow t_1^2 y - t_1 c = -(x - ct_1)$$
$$\Rightarrow t_1^2 y = -x + 2ct_1 \quad (1)$$

Similarly, the equation of the tangent from *Q* is $t_2^2 y = -x + 2ct_2$ and these lines intersect where

$$t_1^2 y - 2ct_1 = t_2^2 y - 2ct_2,$$

so that $y(t_1^2 - t_2^2) = 2c(t_1 - t_2)$
and $y = \frac{2c}{t_1 + t_2}$ (as $t_1 \neq t_2$)
Then, from (1), $x = 2ct_1 - \frac{2ct_1^2}{t_1 + t_2}$

$$=\frac{2ct_1^2+2ct_1t_2-2ct_1^2}{t_1+t_2}$$

$$=\frac{2ct_1t_2}{t_1+t_2}$$

and so $\frac{y}{x} = \frac{1}{t_1 t_2} = -1$ (found earlier),

and thus the points of intersection satisfy y = -x, as required.

(5) Use matrices to show that the rectangular hyperbola $x^2 - y^2 = a^2$ can be obtained by rotating the rectangular hyperbola $xy = c^2$, expressing a^2 in terms of c.

Solution

The asymptotes of $x^2 - y^2 = a^2$ are $y = \pm x$, whilst the asymptotes of

 $xy = c^2$ are the *x* and *y* axes.

So consider a rotation of 45° clockwise.

Then the point (x, y) on the hyperbola $xy = c^2$ is transformed to the point (u, v), where

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \cos(-45^\circ) & -\sin(-45^\circ) \\ \sin(-45^\circ) & \cos(-45^\circ) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} x + y \\ -x + y \end{pmatrix}$$

Then $u^2 - v^2 = (u - v)(u + v)$

$$=\frac{1}{\sqrt{2}}(2x).\frac{1}{\sqrt{2}}(2y)=2xy=2c^{2}$$

Relabelling gives $x^2 - y^2 = 2c^2$ (and $a^2 = 2c^2$).

(6) Show that the equation of the normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point (*acosht*, *bsinht*) is

 $xasinht + ybcosht = (a^2 + b^2)sinhtcosht$

Solution

 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{bcosht}{asinht}$

so that equation of normal is $y - bsinht = -\frac{asinht}{bcosht}(x - acosht)$

 \Rightarrow bcosht.y - b²sinhtcosht = -xasinht + a²sinhtcosht

 $\Rightarrow xasinht + ybcosht = (a^2 + b^2)sinhtcosht$, as required

(7) [Edx (Pearson), FP1, ME2, Q7 (p58)]

 $l_1 \& l_2$ are distinct tangents to the rectangular hyperbola xy = 9 with gradient $-\frac{1}{4}$; find the equations of $l_1 \& l_2$

Solution

 $y = \frac{9}{x} \Rightarrow \frac{dy}{dx} = -9x^{-2}$

Suppose that the gradient at the point $(a, \frac{9}{a})$ is $-\frac{1}{4}$

Then $-9a^{-2} = -\frac{1}{4}$, so that $a^2 = 36$, and $a = \pm 6$

Equation of $l_1: y - \frac{9}{6} = -\frac{1}{4}(x - 6);$

or 4y - 6 = -x + 6; x + 4y = 12

Equation of $l_2: y - (-\frac{9}{6}) = -\frac{1}{4}(x - [-6]);$

or 4y + 6 = -x - 6; x + 4y = -12

(8) [Edx (Pearson), FP1, ME2, Q14 (p59)]

Suppose that P is a general point on a rectangular hyperbola and that the tangent at P crosses the *x* and *y* axes at A and B respectively. Show that:

(i) AP = BP

(ii) the triangle OAB has a constant area, as P varies

Solution

(i) Suppose that the equation of the rectangular hyperbola is $xy = c^2$ and that P is the point $\left(a, \frac{c^2}{a}\right)$.

Then $\frac{dy}{dx} = -c^2 x^{-2}$, and the equation of the tangent at P is $y - \frac{c^2}{a} = -\frac{c^2}{a^2}(x-a)$ At A, $0 - \frac{c^2}{a} = -\frac{c^2}{a^2}(x-a)$, so that a = x - a and x = 2aAt B, $y - \frac{c^2}{a} = -\frac{c^2}{a^2}(0-a)$, so that $y = \frac{c^2}{a} + \frac{c^2}{a} = \frac{2c^2}{a}$ Then $AP^2 = (2a - a)^2 + (\frac{c^2}{a} - 0)^2 = a^2 + \frac{c^4}{a^2}$ and $BP^2 = (a - 0)^2 + (\frac{2c^2}{a} - \frac{c^2}{a})^2 = a^2 + \frac{c^4}{a^2}$ Thus AP = BP, as required.

(ii) Area of OAB = $\frac{1}{2}(2a)\left(\frac{2c^2}{a}\right) = 2c^2$; ie a constant