Hyperbolas - Exercises (2 pages; 17/2/20)

Key to difficulty:

* easier

** moderate

*** harder

(1**) Show that the equation of the tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point (acosht, bsinht) is

yasinht = xbcosht - ab

 (2^{***}) Given that the tangent in (1) meets the asymptotes of the hyperbola at the points P & Q, show that the mid-point of P & Q is (acosht, bsinht).

(3***) In the case where b = a, find the area of the triangle OPQ (where P & Q are as in (2), and O is the Origin).

(4***) The chord PQ, where P and Q are points on the rectangular hyperbola $xy=c^2$, has gradient 1. Show that the locus of the point of intersection of the tangents from P and Q is the line

$$y = -x$$
. [Edx FP3 textbook, Ex. 2G, Q9]

(5***) Use matrices to show that the rectangular hyperbola

 $x^2 - y^2 = a^2$ can be obtained by rotating the rectangular hyperbola $xy = c^2$, expressing a^2 in terms of c.

(6**) Show that the equation of the normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ at the point } (acosht, bsinht) \text{ is}$ $xasinht + ybcosht = (a^2 + b^2)sinhtcosht$

 l_1 & l_2 are distinct tangents to the rectangular hyperbola xy=9 with gradient $-\frac{1}{4}$; find the equations of l_1 & l_2

Suppose that P is a general point on a rectangular hyperbola and that the tangent at P crosses the *x* and *y* axes at A and B respectively. Show that:

- (i) AP = PB
- (ii) the triangle OAB has a constant area, as P varies