Hyperbolas - Exercises (2 pages; 17/2/20) ## Key to difficulty: * easier ** moderate *** harder (1**) Show that the equation of the tangent to the hyperbola $$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$ at the point (acosht, bsinht) is yasinht = xbcosht - ab (2^{***}) Given that the tangent in (1) meets the asymptotes of the hyperbola at the points P & Q, show that the mid-point of P & Q is (acosht, bsinht). (3***) In the case where b = a, find the area of the triangle OPQ (where P & Q are as in (2), and O is the Origin). (4***) The chord PQ, where P and Q are points on the rectangular hyperbola $xy=c^2$, has gradient 1. Show that the locus of the point of intersection of the tangents from P and Q is the line $$y = -x$$. [Edx FP3 textbook, Ex. 2G, Q9] (5***) Use matrices to show that the rectangular hyperbola $x^2 - y^2 = a^2$ can be obtained by rotating the rectangular hyperbola $xy = c^2$, expressing a^2 in terms of c. (6**) Show that the equation of the normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ at the point } (acosht, bsinht) \text{ is}$ $xasinht + ybcosht = (a^2 + b^2)sinhtcosht$ l_1 & l_2 are distinct tangents to the rectangular hyperbola xy=9 with gradient $-\frac{1}{4}$; find the equations of l_1 & l_2 Suppose that P is a general point on a rectangular hyperbola and that the tangent at P crosses the *x* and *y* axes at A and B respectively. Show that: - (i) AP = PB - (ii) the triangle OAB has a constant area, as P varies