Hyperbolas Q6 [9 marks](2/7/21)

Exam Boards

OCR : -

MEI: -

AQA: -

Edx: Further Pure 1 (Year 2)

Suppose that P is a general point on a rectangular hyperbola and that the tangent at P crosses the *x* and *y* axes at A and B respectively. Show that:

- (i) AP = BP [7 marks]
- (ii) the triangle OAB has a constant area, as P varies [2 marks]

Solution

(i) Suppose that the equation of the rectangular hyperbola is $xy = c^2$ and that P is the point $\left(a, \frac{c^2}{a}\right)$. [1 mark] Then $\frac{dy}{dx} = -c^2 x^{-2}$, [1 mark] and the equation of the tangent at P is $y - \frac{c^2}{a} = -\frac{c^2}{a^2}(x-a)$ [1 mark] At A, $0 - \frac{c^2}{a} = -\frac{c^2}{a^2}(x-a)$, so that a = x - a and x = 2a [1 mark] At B, $y - \frac{c^2}{a} = -\frac{c^2}{a^2}(0-a)$, so that $y = \frac{c^2}{a} + \frac{c^2}{a} = \frac{2c^2}{a}$ [1 mark] Then $AP^2 = (2a - a)^2 + (\frac{c^2}{a} - 0)^2 = a^2 + \frac{c^4}{a^2}$ [1 mark] and $BP^2 = (a - 0)^2 + (\frac{2c^2}{a} - \frac{c^2}{a})^2 = a^2 + \frac{c^4}{a^2}$ Thus AP = BP, as required. [1 mark]

(ii) Area of OAB =
$$\frac{1}{2}(2a)\left(\frac{2c^2}{a}\right) = 2c^2$$
; ie a constant [2 marks]