Hyperbolas Q6 [9 marks](2/7/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 2)

Suppose that P is a general point on a rectangular hyperbola and that the tangent at P crosses the x and y axes at A and B respectively. Show that:
(i) $A P=B P$ [7 marks]
(ii) the triangle OAB has a constant area, as P varies [2 marks]

Solution

(i) Suppose that the equation of the rectangular hyperbola is $x y=c^{2}$ and that P is the point $\left(a, \frac{c^{2}}{a}\right)$. [1 mark]
Then $\frac{d y}{d x}=-c^{2} x^{-2},[1 \mathrm{mark}]$
and the equation of the tangent at P is
$y-\frac{c^{2}}{a}=-\frac{c^{2}}{a^{2}}(x-a) \quad[1 \mathrm{mark}]$
At A, $0-\frac{c^{2}}{a}=-\frac{c^{2}}{a^{2}}(x-a)$, so that $a=x-a$ and $x=2 a[1 \mathrm{mark}]$
At B, $y-\frac{c^{2}}{a}=-\frac{c^{2}}{a^{2}}(0-a)$, so that $y=\frac{c^{2}}{a}+\frac{c^{2}}{a}=\frac{2 c^{2}}{a} \quad[1 \mathrm{mark}]$
Then $A P^{2}=(2 a-a)^{2}+\left(\frac{c^{2}}{a}-0\right)^{2}=a^{2}+\frac{c^{4}}{a^{2}}[1$ mark $]$
and $B P^{2}=(a-0)^{2}+\left(\frac{2 c^{2}}{a}-\frac{c^{2}}{a}\right)^{2}=a^{2}+\frac{c^{4}}{a^{2}}$
Thus $A P=B P$, as required. [1 mark]
(ii) Area of $\mathrm{OAB}=\frac{1}{2}(2 a)\left(\frac{2 c^{2}}{a}\right)=2 c^{2}$; ie a constant [2 marks]

