Hyperbolas - Q5 [Practice/E] (26/5/21)

Show that the equation of the normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point (*acosht*, *bsinht*) is

$$xasinht + ybcosht = (a^2 + b^2)sinhtcosht$$

Show that the equation of the normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ at the point } (a cosht, b sinht) \text{ is}$$

$$xa sinht + yb cosht = (a^2 + b^2) sinht cosht$$

Solution

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{bcosht}{asinht}$$

so that equation of normal is $y - bsinht = -\frac{asinht}{bcosht}(x - acosht)$

$$\Rightarrow$$
 bcosht. $y - b^2 sinhtcosht = -xasinht + a^2 sinhtcosht$

$$\Rightarrow$$
 xasinht + ybcosht = $(a^2 + b^2)$ sinhtcosht, as required