Hyperbolas - Q4 [Practice/H](26/5/21)

Use matrices to show that the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ can be obtained by rotating the rectangular hyperbola $x y=c^{2}$, expressing a^{2} in terms of c.

Use matrices to show that the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ can be obtained by rotating the rectangular hyperbola $x y=c^{2}$, expressing a^{2} in terms of c.

Solution

The asymptotes of $x^{2}-y^{2}=a^{2}$ are $y= \pm x$, whilst the asymptotes of $x y=c^{2}$ are the x and y axes.

So consider a rotation of 45° clockwise.
Then the point (x, y) on the hyperbola $x y=c^{2}$ is transformed to the point (u, v), where
$\binom{u}{v}=\left(\begin{array}{cc}\cos \left(-45^{\circ}\right) & -\sin \left(-45^{\circ}\right) \\ \sin \left(-45^{\circ}\right) & \cos \left(-45^{\circ}\right)\end{array}\right)\binom{x}{y}$
$=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\binom{x}{y}$
$=\frac{1}{\sqrt{2}}\binom{x+y}{-x+y}$
Then $u^{2}-v^{2}=(u-v)(u+v)$
$=\frac{1}{\sqrt{2}}(2 x) \cdot \frac{1}{\sqrt{2}}(2 y)=2 x y=2 c^{2}$
Relabelling gives $x^{2}-y^{2}=2 c^{2}$ (and $a^{2}=2 c^{2}$).

