Hyperbolas Q3 [11 marks](2/7/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 2)

The chord $P Q$, where P and Q are points on the rectangular hyperbola $x y=c^{2}$, has gradient 1 . Show that the locus of the point of intersection of the tangents from P and Q is the line $y=-x$.

Solution

Let $P \& Q$ be the points $\left(c t_{1}, \frac{c}{t_{1}}\right) \&\left(c t_{2}, \frac{c}{t_{2}}\right)$, respectively.
As the gradient of $P Q$ is $1, \frac{\frac{c}{t_{2}-\frac{c}{t_{1}}}}{c t_{2}-c t_{1}}=1, \quad[1 \mathrm{mark}]$
so that $\frac{1}{t_{2}}-\frac{1}{t_{1}}=t_{2}-t_{1}$
$\Rightarrow \frac{t_{1}-t_{2}}{t_{1} t_{2}}=t_{2}-t_{1}$
$\Rightarrow t_{1} t_{2}=-1$, as $t_{1} \neq t_{2}$ ($P \& Q$ being distinct points) [2 marks]
The equation of the tangent from P is:
$\left.\frac{y-\frac{c}{t_{1}}}{x-c t_{1}}=\frac{d y / d t}{d x / d t} \right\rvert\, t=t_{1}$, where $x=c t \quad \& y=\frac{c}{t}$
so that $d y / d t=-\frac{c}{t^{2}} \& d x / d t=c$
and the equation of the tangent from P is
$\frac{y-\frac{c}{t_{1}}}{x-c t_{1}}=\frac{\left(-\frac{c}{t_{1}{ }^{2}}\right)}{c} \Rightarrow t_{1}{ }^{2} y-t_{1} c=-\left(x-c t_{1}\right)$
$\Rightarrow t_{1}{ }^{2} y=-x+2 c t_{1}$
(1) [3 marks]

Similarly, the equation of the tangent from Q is $t_{2}{ }^{2} y=-x+2 c t_{2}$ and these lines intersect where
$t_{1}^{2} y-2 c t_{1}=t_{2}{ }^{2} y-2 c t_{2}, \quad[1$ mark $]$
so that $y\left(t_{1}{ }^{2}-t_{2}{ }^{2}\right)=2 c\left(t_{1}-t_{2}\right)$
and $y=\frac{2 c}{t_{1}+t_{2}}\left(\right.$ as $\left.t_{1} \neq t_{2}\right)$ [1 mark]
Then, from (1), $x=2 c t_{1}-\frac{2 c t_{1}{ }^{2}}{t_{1}+t_{2}}$
$=\frac{2 c t_{1}{ }^{2}+2 c t_{1} t_{2}-2 c t_{1}{ }^{2}}{t_{1}+t_{2}}$
$=\frac{2 c t_{1} t_{2}}{t_{1}+t_{2}}[2 \mathrm{marks}]$
and so $\frac{y}{x}=\frac{1}{t_{1} t_{2}}=-1$ (found earlier),
and thus the points of intersection satisfy $y=-x$, as required.
[1 mark]

