Hyperbolas - Q2 [10 marks](26/5/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 2)
(i) Given that the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point (acosht, bsinht) (with equation yasinht $=x b \cosh t-$ $a b)$ meets the asymptotes of the hyperbola at the points $P \& Q$, show that the mid-point of P and Q is (acosht, bsinht). [6 marks]
(ii) In the case where $b=a$, find the area of the triangle $O P Q$ (where O is the Origin). [4 marks]
(i) Given that the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point (acosht, bsinht) (with equation yasinht $=x b \operatorname{cosht}-$ $a b)$ meets the asymptotes of the hyperbola at the points $P \& Q$, show that the mid-point of P and Q is (acosht, bsinht). [6 marks]
(ii) In the case where $b=a$, find the area of the triangle $O P Q$ (where O is the Origin). [4 marks]

Solution

(i) The asymptotes of the hyperbola are $y= \pm \frac{b}{a} x[1 \mathrm{mark}]$

The tangent to the hyperbola at ($a \operatorname{cosht}, b \sinh t$) meets the asymptote $y=\frac{b}{a} x$ at P (say), where $b x \sinh t=x b \cosh t-a b$ [1 mark]
and the asymptote $y=-\frac{b}{a} x$ at Q where $-b x \operatorname{sinht}=x b \cosh t-a b$ [1 mark]
so that P is the point $\left(\frac{a}{\cosh t-\sinh t}, \frac{b}{\cosh t-\sinh t}\right)$ [1 mark] and Q is the point $\left(\frac{a}{\cosh t+\sinh t}, \frac{-b}{\cosh t+\operatorname{sinht}}\right)$ [1 mark]
The mid-point of $P \& Q$ is therefore
$\left(\frac{1}{2}\left[\frac{a}{\cosh t-\sinh t}+\frac{a}{\cosh t+\sinh t}\right], \frac{1}{2}\left[\frac{b}{\cosh t-\sinh t}+\frac{-b}{\cosh t+\sinh t}\right]\right)$
$=\left(\frac{a \cosh t}{\cosh ^{2} t-\sinh ^{2} t}, \frac{b \sinh t}{\cosh ^{2} t-\sinh ^{2} t}\right)=(a \cosh t, b \sinh t)$, as required.
[1 mark]
(ii) The two asymptotes are at right angles to each other, so that the required area, $A=\frac{1}{2} O P . O Q$ [1 mark]
Then $4 A^{2}=\left(\left(\frac{a}{\cosh t-\sinh t}\right)^{2}+\left(\frac{a}{\cosh t-\sinh t}\right)^{2}\right)$
$\times\left(\left(\frac{a}{\cosh t+\sinh t}\right)^{2}+\left(\frac{-a}{\cosh t+\sinh t}\right)^{2}\right) \quad[1 \mathrm{mark}]$
$=\left(\frac{2 a^{2}}{(\cosh t-\sinh t)^{2}}\right)\left(\frac{2 a^{2}}{(\cosh t+\sinh t)^{2}}\right)[1$ mark $]$
$=\frac{4 a^{4}}{\left(\cosh ^{2} t-\sinh ^{2} t\right)^{2}}=4 a^{4}$
and therefore $A=a^{2}$ [1 mark]

