Hyperbolas Overview (2/7/21)

Q1 [Practice/E]

Show that the equation of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point (acosht, bsinht) is yasinht $=x b \operatorname{cosht}-a b$

Q2 [10 marks]

(i) Given that the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point (acosht, bsinht) (with equation yasinht $=x b \operatorname{cosht}-$ $a b$) meets the asymptotes of the hyperbola at the points $P \& Q$, show that the mid-point of P and Q is (acosht, bsinht). [6 marks]
(ii) In the case where $b=a$, find the area of the triangle $O P Q$ (where O is the Origin). [4 marks]

Q3 [11 marks]

The chord $P Q$, where P and Q are points on the rectangular hyperbola $x y=c^{2}$, has gradient 1 . Show that the locus of the point of intersection of the tangents from P and Q is the line $y=-x$.

Q4 [Practice/H]

Use matrices to show that the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ can be obtained by rotating the rectangular hyperbola $x y=c^{2}$, expressing a^{2} in terms of c.

Q5 [Practice/E]

Show that the equation of the normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \cosh t, b \sinh t)$ is $x a \sinh t+y b \cosh t=\left(a^{2}+b^{2}\right) \sinh t \cosh t$

Q6 [9 marks]

Suppose that P is a general point on a rectangular hyperbola and that the tangent at P crosses the x and y axes at A and B respectively. Show that:
(i) $A P=B P$ [7 marks]
(ii) the triangle OAB has a constant area, as P varies [2 marks]

