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Hooke's Law (9 pages; 26/1/19) 

(1) Hooke's law can be expressed in 3 ways: 

(i) 𝑇 =
𝐸𝐴𝑥

𝑙
  , where 𝐸 is Young's modulus and 𝐴 is the cross-

sectional area of a string (or wire/spring) 

𝐸 depends only on the nature of the material, and has S.I. units of 

𝑁𝑚−2 or Pascals (Pa). 

This version is used in Physics, but not in A Level Mechanics. 

(ii) 𝑇 =
𝜆𝑥

𝑙
  , where 𝜆 is the modulus of elasticity (of the string) 

As well as the nature of the material, 𝜆 depends on the cross-

sectional area of the string. Its S.I. units are 𝑁. 

This is the version most commonly used in A Level Mechanics. 

(iii) 𝑇 = 𝑘𝑥  , where 𝑘 is the stiffness (of the string) 

As well as the nature of the material and the cross-sectional area 

of the string, 𝑘 depends on the original length of the string. In 

other words, 𝑘 is specific to each piece of string. Its S.I. units are 

𝑁𝑚−1. 

 

(2) Tension in strings (etc) 

(2.1) Consider a car pulling a caravan, by means of a towbar. 

Separate force diagrams can be drawn for the car and the towbar.  
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For the towbar, the fact that it is under tension means that the 

external forces at its ends are pulling on the towbar (if the towbar 

is under compression, then the external forces are pressing on the 

ends). Initially these forces are taken to be 𝑇1 and 𝑇2. By Newton's 

2nd law, 𝑇1 − 𝑇2 = 𝑚𝑎, where 𝑚 is the mass of the towbar and 𝑎 

its acceleration. 

Then, if either 𝑚 is deemed to be negligible, or if 𝑎 = 0, then 

approximately: 𝑇1 = 𝑇2 = 𝑇, say. 

By Newton's 3rd law, as the car is pulling on the towbar with 

force 𝑇, it follows that the towbar is also pulling on the car with a 

force 𝑇. 

 

(2.2) Consider the situation shown below, where the string AB 

(with original length 𝑙1, modulus of elasticity 𝜆1 and extension 𝑥1) 

is hanging vertically from a fixed point A, and is connected to the 

string BC (with original length 𝑙2, modulus of elasticity 𝜆2 and 

extension 𝑥2), which also hangs vertically and has a load of weight 

W at C. 
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Force diagrams can be drawn for the string AB, the string BC, and 

the load at C. 

 

 

 

 

 

 

 

 

 

The external forces at the ends of AB and BC follow from the 

definition of tension. By Newton's 3rd law, the force on AB at B (ie 

𝑇𝐴𝐵) will be equal (but with opposite direction) to the force on BC 

at B (ie 𝑇𝐵𝐶),  so that 𝑇𝐴𝐵 = 𝑇𝐵𝐶 . This is a standard result that 

applies when strings etc with different 𝜆𝑠 are connected together 

vertically or horizontally. However, it won't apply in more 

complicated situations, such as that in (2.4). 

In the force diagram for C, the upward force is 𝑇𝐵𝐶 , by Newton's 

3rd law. As the system is at rest, 𝑊 − 𝑇𝐵𝐶 = 0, by Newton's 2nd 

law. Thus 𝑇𝐴𝐵 = 𝑇𝐵𝐶 = 𝑊, and so 
𝜆1𝑥1

𝑙1
=

𝜆2𝑥2

𝑙2
= 𝑊 

Note that we cannot bypass the load at C by saying that the 

downward force on BC is W, because W is the gravitational force 

on the load C; not on the string. Instead 𝑇𝐵𝐶  has to be introduced 

as the reaction force between the string and the load. 
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When the system is at rest (or in equilbrium; ie when the 

acceleration is zero), the effect is the same as if a force of W were 

applied directly to the string. But if the system has a non-zero 

acceleration (so that 𝑊 ≠ 𝑇𝐵𝐶), then this would not be the case.  

The string could of course be pulled on by a force F. In that case, F 

would equal 𝑇𝐵𝐶 , by the definition of the tension (and this would 

be true whether the system were accelerating or not). As 

mentioned above though, the tension forces at the two ends of BC 

would only be equal (when there is acceleration) if the string has 

negligible mass. 

 

(2.3) Consider the situation where string AB (with original length 

𝑙1 and modulus of elasticity 𝜆1) is horizontal, with A fixed, and 

joined to the string BC (with original length 𝑙2 and modulus of 

elasticity 𝜆2), which is also horizontal, with C fixed. Suppose that 

the distance AC is 𝑙1 + 𝑙2 + 𝑥. Let the extensions of AB and BC be 

𝑥1 and 𝑥2, so that  𝑥1 + 𝑥2 = 𝑥.  

 

 

 

 

Then 𝑇𝐴𝐵 = 𝑇𝐵𝐶 , as before, and 𝑇𝐴𝐵 =
𝜆1𝑥1

𝑙1
 and 𝑇𝐵𝐶 =

𝜆2𝑥2

𝑙2
 

Therefore  
𝜆1𝑥1

𝑙1
=

𝜆2𝑥2

𝑙2
=

𝜆2(𝑥−𝑥1)

𝑙2
 , 

so that 𝑥1(𝜆1𝑙2 + 𝜆2𝑙1) = 𝜆2𝑙1𝑥 

and thus 𝑥1 =
𝜆2𝑙1𝑥

𝜆1𝑙2+𝜆2𝑙1
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(2.4) Suppose that a load of weight 𝑊 is now applied at B, such 

that, in an equilibrium position, B is at a distance 𝑑 below its 

original level (though not necessarily directly below its original 

position). 

Special Case: 𝑙1 = 𝑙2 = 𝑙 and 𝜆1 = 𝜆2 = 𝜆, and also 𝑥1 = 𝑥2 =
1

2
𝑥; 

ie the strings AB and BC are identical, and B is directly below the 

mid-point of AC. 

By symmetry, the new tensions in the strings are equal; say 𝑇. 

The force diagram for the load at B is shown below. 

 

 

 

 

 

 

 

 

Resolving vertically, 2𝑇𝑐𝑜𝑠𝜃 = 𝑊 (1) 

Also, 𝑡𝑎𝑛𝜃 =
𝑙+

𝑥

2

𝑑
  (2)  and, if 𝑦 is the new extension of AB, 

𝑙 + 𝑦 = √(𝑙 +
𝑥

2
)2 + 𝑑2   (3) and 𝑇 =

𝜆𝑦

𝑙
  (4) 

Suppose that 𝜆 = 10, 𝑙 = 2, 𝑥 = 2, 𝑑 = 4. Then we can find 𝑊 as 

follows: 

From (2),  𝑡𝑎𝑛𝜃 =
3

4
 , so that 𝑐𝑜𝑠𝜃 =

4

5
; 
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so that (3) ⇒ 2 + 𝑦 = 5, and (4) ⇒ 𝑇 =
30

2
= 15 

Then, from (1), 𝑊 = 30 (
4

5
) = 24  

 

General case 

 

 

 

 

 

 

 

 

 

Suppose that 𝑙1 = 1, 𝑙2 = 2, 𝜆1 = 8, 𝜆2 = 12, 𝑥 = 2, 𝑑 = 4.  

Let  𝑦1 and 𝑦2 be the new extensions of AB and BC respectively.  

Here we can't take advantage of symmetry. Equations can be set 

up (as shown below), but they would be difficult to solve. 

Hence exam questions are likely to avoid this situation, and be 

based instead on the special case, where the load hangs below the 

mid-point. 

The equations are: 

Resolving vertically, 𝑇𝐴𝐵𝑐𝑜𝑠𝜃 + 𝑇𝐵𝐶𝑐𝑜𝑠𝜙 = 𝑊  (1) 

Resolving horizontally, 𝑇𝐴𝐵𝑠𝑖𝑛𝜃 = 𝑇𝐵𝐶𝑠𝑖𝑛𝜙  (2) 
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And 𝑇𝐴𝐵 =
𝜆1𝑦1

𝑙1
= 8𝑦1  (3a) and 𝑇𝐵𝐶 =

𝜆2𝑦2

𝑙2
= 6𝑦2  (3a) 

Then  𝑐𝑜𝑠𝜃 =
𝑑

𝑙1+𝑦1
=

4

1+𝑦1
   (4a) and  𝑐𝑜𝑠𝜙 =

𝑑

𝑙2+𝑦2
=

4

2+𝑦2
 (4b) 

Also, 𝑑𝑡𝑎𝑛𝜃 + 𝑑𝑡𝑎𝑛𝜙 = 𝑙1 + 𝑙2 + 𝑥, 

so that  𝑡𝑎𝑛𝜃 + 𝑡𝑎𝑛𝜙 =
5

4
 (5) 

(Allowing for the known values, there are 7 unknowns and 7 

equations.) 

 

(3) Multiple springs  

(a) Springs in series 

Consider two springs of stiffness 𝑘1&𝑘2 , held in equilibrium in 

series, as shown in Figure 1. 

 

 

Figure 1 

 

Draw separate force diagrams for the two springs, as in Figure 2. 
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Figure 2 

 

By N2L,  𝑇1 = 𝐹  and 𝑇2 = 𝐹 

(Also, 𝑇1 = 𝑇2 , by N3L. ) 

By Hooke's Law, 𝐹 = 𝑘1𝑒1 & 𝐹 = 𝑘2𝑒2, 

where 𝑒1&𝑒2 are the extensions of the two springs. 

Let the stiffness of the combined springs be 𝑘. 

Then 𝐹 = 𝑘(𝑒1 + 𝑒2) 

and so  𝑘 =
𝐹

𝑒1+𝑒2
=

𝐹
𝐹

𝑘1
+

𝐹

𝑘2

 

⇒
1

𝑘
=

1

𝑘1
+

1

𝑘2
  

 

Note: This can be extended to more than two springs, by replacing  

1

𝑘2
 with 

1

𝑘3
+

1

𝑘4
 , and then re-labelling to give  

1

𝑘
=

1

𝑘1
+

1

𝑘2
+

1

𝑘3
 

 

(b) Springs in parallel 

Consider two springs of the same original length and stiffnesses 

𝑘1&𝑘2 , held in equilibrium in parallel, as shown in Figure 3. 
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Figure 3 

 

(Note: This system only makes sense if the original lengths are the 

same, so that when no force is applied, the springs both reach to 

the two sides.) 

The left-hand side of this system is equivalent to that shown in 

Figure 4, with forces being applied to a light bar (akin to a towbar 

between a car and a trailer).  

 

Figure 4 

 

Let the stiffness of the combined springs be 𝑘, with extension e. 

As the springs have the same original length,  their extensions are 

both equal to e. 

Then   𝐹 = 𝑘𝑒 ,  𝐹1 = 𝑘1𝑒  ,  𝐹2 = 𝑘2𝑒,  and  𝐹 = 𝐹1 + 𝐹2 

Hence 𝑘𝑒 = 𝑘1𝑒 + 𝑘2𝑒  , and so  𝑘 = 𝑘1 + 𝑘2   

 

 


