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Groups - Part 2 (12 pages; 23/10/16)

(A) Cyclic Groups - Examples
Notes
(a) All cyclic groups of order n (denoted C,,) are isomorphic.

(b) All groups of prime order are cyclic (but the converse is not
true).

(D) (Z+)
1 _

infinite order;e = 0;a™ = —a

(2){0,1,2,...,n — 1} under addition mod n (or 'modulo’ n)
- commonly denoted (Z,,, +)

Note: it is possible to write a +,, b, but a + b is used when the
modulus is understood.

For eg (Z4,+), {0,2} is a subgroup.

(3) ({1! —1},)()

(4) {1,i,—1, —i} under multiplication of complex numbers

1 I | =1 =i
1 1 [ | =1 =i
i i | -1 —-i| 1
-1/-1]-=i] 1 J
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i?2=—-1,i3=—i,i* =1,so0iis oforder 4

(—=1)? = 1,so —1is of order 2
(=i)%2 =-1,(=i)3 =i, (=i)*=1,s0 —iisof order 4

Thus, i & — i are generators of the group (being inverses of each
other).

(5) {1,2,4,8} under multiplication mod 15
1 |2 |4 |8
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BN |
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©p 1) (5 o) (o 2D o)
under multiplication

(0 1\ 4n0 : :
[a = (_1 O).9O rotation clockwise

b= (_01 _01) : 180° rotation

_ (0 =1\ . 4no : g :
c= (1 0 ).90 rotation anti-clockwise]

[More generally, the group generated by the rotation of a plane

through %Oo about a fixed point.]
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a & c are generators of the group

1 x-1 1+x

O

x x+1 ' 1-x
under composition of functionsonx € R, x # —1,0,1

1 x—1 1+x
Let a=——,b=—&c=—
X x+1 1—x

"

Then a? = —

x—1
o s —1—-(x+1 -2
and b2 = (xti) _ X (x+1) _ —

x—1 T ox—1+(x+1) 2x
G (r+1)

So, if this is to be a group, it must be cyclic, rather than the Klein
4-group (since all elements are of order 2 for the latter).

L : 1
As a? = e, itis worth relabelling the elements, so that b = — -

Then it doesn't matter how the other non-identity elements are

labelled; eg a = i—: &c= % , and the Cayley table is found to

be:

aSQ [®
QS |0 |®
o0 |ISQ |Q
Q0|0 ||
SR (D |0 |a

(8) If w = e?™/3,{1, -1, w, —w, w?, —w?} under multiplication

(B) Non-Cyclic Groups - Examples
(1) {1,3,5,7} under multiplication mod 8

Note: More generally, the positive integers less than n which have
no factors in common with n (with 1 included) form a group
under the operation of multiplication mod n.
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Klein 4-group (as not cyclic)

Note that the similar-looking group {1,2,4,8} under multiplication
mod 15 was found to be cyclic.

@, 1) )G DG 2

under multiplication

(1 0\, . s
[a = (0 _1). reflection about x-axis

b = (_1 (1)) reflection about y-axis
c=(7" "

_1): 180° rotation]

QS ®
colzalela| o L @
S0 (0 [Q|Q
Q|0 o
® Q0|0

ie the Klein 4-group

(3) The symmetry group of an equilateral triangle, D; has order 6.
[D stands for 'dihedral’ ("having or formed by 2 planes" -
although that doesn't really explain much!)]
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[More generally, D,, (the symmetry group of a regular n-sided

polygon) is of order 2n: in addition to the identity element, there
will be n — 1 rotations and n reflections.]

W/
W
N \V
o
N ¢ i e
W

Let I be the identity transformation.

Let P be a rotation of 120° anticlockwise in the plane of the paper.
Let Q be a rotation of 120° clockwise in the plane of the paper.
Let U,V & W be reflections in the U,V & W axes respectively.

The Cayley table is found to be as follows:

(with the 1st transformation being along the top)

<=7
TO|TI<|S|E|=

O |TISICI<|<
—ITeIC|I<|=|=

S| <|S|7|™
S <7~ |
SIS <|T|7|IT

The following observations can be made:

(i) The group is non-abelian.
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(i) U,V & W are of order 2.

(iii) P3 = P(P?) = PQ = I and Q3 = Q(Q?) = QP = I, so that
both P & Q are of order 3. And {/, P, Q} is a subgroup.

(Note that, whilst U,V & W don't appear in the section of the table
with rows and columns of I, P & Q, the reverse isn'ttrue: P & Q
do appear in the remainder of the table.)

(4) Permutations of (1,2,3, ...n)

eg (forn =5) C} g g LZL i) is a possible permutation.

Denoted §,, (S stands for symmetric - though the origin of this
isn't clear).

The order is n! (n ways of choosing the 1st entry of the 2nd row,
n — 1 ways of choosing the 2nd entry etc)
(By convention, the top row is ordered.)

To find inverse permutations, simply swap the two rows and then
order the top row.

For n = 3, the elements of the group are

NEERNEREE
=z 3 Dd=G 1 2r=G 33
1 2 3 1 2 3
a2=<1 3 2>=e,b2=<2 1 3>=e
1 2 3 1 2 3
1 2 3 1 2 3
c2=<2 3 1>=d,d2=<3 1 2>=c
3 1 2 2 3 1

1 2 3
f2=(3 2 1)=e
1 2 3
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1 2 3 1 2 3
C3:C(C2)=<3 1 2>:€,d3=<2 3 1>:e
1 2 3

All groups of order 6 are either cyclic or isomorphic to D;. As
none of the elements has order 6, S; cannot be cyclic. Comparing
with D3, and relabelling, the two elements of order 3, ¢ & d need
to be P & Q (or the other way round); noting that ¢ & d are the
cyclic permutations of (1,2,3).

Then, we can establish that af = ¢, so that we wanta, b & f to
become U, W &V, respectively (as UV = P).

1 1 x-1 x }

G {x1-x-,—,

x’1-x" x 'x-1

under composition of functionson x € R, x # 0,1

Lete=x,a=1—x,b=1,c=i,d=x—_1,f=i
X 1—x X x—1
e a b C d f
e e a b C d f
a a e d f b C
b b C e a f d
C C b f d e a
d d f a e C b
f f d C b a e

This group is non-abelian.

a’ = e, so a is of order 2

b? = e, so b is of order 2

c?=d, ¢ =c(c?) =cd =esocisoforder3

[note that c(c?) = c(c)(c) = (c?)c, by associativity, so that

cd = dc (even though the group isn't abelian)]



fmng.uk

d? = c¢,d® =d(d?) = dc = esod isof order 3

f? =e, so fisoforder 2

Subgroups: {e,a},{e, b}, {e, f},{e, c,d}

By re-labelling, we can see that this group is isomorphic to Ds:
RewriteeasIl,cas P,das Q,aas U,f asV &basW
(sinceaf =c & UV = P)

(6) Symmetries of a square (order 8), with the following
subgroups:

4 reflections (each of order 2)
rotation through 180 (order 2)

rotations through 90° or — 90° (each of order 4)

(C) Summaries of Results
Groups of Order 4
(1) All groups of order 4 are either cyclic or are the Klein 4-group.

(2) Cyclic groups of order 4 have the following structure:

Qo |T T

O (SQ D

O |0 |®
o0 (IS |Q
S Q0o |a

Alternative form:




Q

Q

The only proper subgroup is: {e, a?}

(3) The Klein 4-group has the following structure:

e a b c
e e a b c
a a e c b
b b c e a
c c b a e
Alternative form:
e a b | ab
e e a b | ab
a a e |ab | b
b b |ab | e a
ab | ab | b a e

(4) Both these types are abelian.

Groups of Order 6
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(1) All groups of order 6 are either cyclic (and therefore abelian)
or isomorphic to D; (symmetries of an equilateral triangle) (and
therefore non-abelian).

(2) Cyclic groups of order 6 have the following proper subgroups:

{e,a?, a*} and {e, a®}

(3) The D5 group has the following structure:
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<=7 TIC
TO T <|S|E|=

SI<|C|T~

S| <GS |T|T|T
Cls <7 |7 |IT
QI ITISIC|I<|<
—ITOIC <= (=

Cyclic Groups

(1) All groups of prime order are isomorphic to each other; being
cyclic. Therefore they are isomorphic to (Z,, +).

(2) All cyclic groups are abelian.

(3) A cyclic group of order n (whether n is prime or not) can
always be created from {0,1,2, ...,n — 1} under addition mod n.

(4) C,, is isomorphic to the group generated by the rotation of a
plane though 27” , and thus cyclic groups of all orders exist.

(5) A group of order n is cyclic if it contains an element of order n.
(6) Any subgroup of a cyclic group must also be cyclic.

(7) For each factor f of the order n of a cyclic group, there will be
a subgroup of order f.

For example, the proper subgroups of the cyclic group of order 12
are: {e,a?, a* a® a8 a'®} ,{e a3, a® a®}, {e, a* a®},{e, a®}

Abelian Groups

(1) A group that contains no elements of order greater than 2 (ie
where every element is its own inverse) must be abelian.

(2) All cyclic groups are abelian.
(3) Klein 4-groups are abelian.
(4) All groups of order 4 are abelian.
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Subgroups

(1) Lagrange's theorem: The order of a subgroup of a finite group
is a factor of the order of the group.

(2) From Lagrange's theorem, groups of prime order have no
subgroups.

(3) Let a be an element of a group G. Then {a™:n € Z}is a
subgroup of G (referred to as the subgroup generated by a). This
is an easy way of finding a subgroup.

(4) If H is a non-empty subset of G, thenifab™! € H Va, b € H,
then H is a subgroup of G

(5) Any subgroup of a cyclic group must also be cyclic.

Elements of Groups
(1) The order of an element divides the order of the group.

(2) Let a be an element of a group G. Then {a™:n € Z}is a
subgroup of G (referred to as the subgroup generated by a). This
is an easy way of finding a subgroup.

is a generator of a group, then g~* will be also.
(3)Ifgisag f a group, then g~* will be al

(4) If g is a generator of a group of order n, then g* will be also if
and only if k and n are co-prime (ie have no common factors).

(5) Every element of a group of prime order is a generator of the
group.

[somorphisms

(1) All groups of prime order are isomorphic to each other; being
cyclic. Therefore they are isomorphic to (Z,, +).

(2) Groups of order 4 are either cyclic, or have 3 elements of
order 2 (the Klein 4-group).
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(3) Cayley's theorem: Any group of order n is isomorphic to a
subgroup of S,, (the group of permutations of (1,2,3, ..., n)).

(D) Table of possibilities

Order Cyclic? | Abelian? | Proper Notes
Subgroups?

4 Y Y Y Cy

4 N Y Y Klein 4-group

6 Y Y Y Ce

6 N N Y D;,S;

Prime, p Y Y N Cp

Non-prime,n |Y Y Y C,

Non-prime,n | N Y/N Y/N




