Groups - Exercises (2 pages; 20/2/20)

Key to difficulty:

* easier

** moderate

*** harder

 (1^{***}) Multiplication modulo m (or just mod m), denoted by \times_m , is defined on the set $\{0,1,2,\ldots,m-1\}$ by carrying out ordinary multiplication and taking the remainder when the product is divided by m. For example, $5\times_3 4=2$.

Show that \times_5 is a closed and commutative binary operation on the set $\{0,1,2,...,4\}$, and identify the inverse of each element, where it exists.

- $(2^{***})(i)$ Show that the set $\{1,4,7,13\}$ forms a group, under multiplication modulo 15.
- (ii) Find the generators of the group.
- (iii) Establish whether the group is cyclic.
- (iv) Identify all the subgroups.
- (3***) For the group $\{x, 1-x, \frac{1}{x}, \frac{1}{1-x}, \frac{x-1}{x}, \frac{x}{x-1}\}$ under composition of functions, where $x \in \mathbb{R}, x \neq 0,1$:
- (i) Establish whether the group is abelian.
- (ii) Find the periods of the elements of the group, and hence identify its proper subgroups.

(4***) Establish which of the following groups are isomorphic to each other:

- (i) {0,1,2,3}; addition modulo 4
- (ii) {1,2,4,8}; multiplication modulo 15
- (iii) {3,6,9,12}; multiplication modulo 15
- (iv) {1,3,5,7}; multiplication modulo 8
- $(v) \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \} \text{; matrix multiplication}$
- (vi) $\{1, i, -1, -i\}$; multiplication of complex numbers