Groups - Q2 [18 marks](25/5/21)

Exam Boards
OCR : Add. Pure (Year 1)
MEI: -
AQA: Discrete (Year 2)
Edx: -
(i) Show that the set $\{1,4,7,13\}$ forms a group, under multiplication modulo 15. [7 marks]
(ii) Find the generators of the group. [6 marks]
(iii) Establish whether the group is cyclic. [2 marks]
(iv) Identify all the subgroups. [3 marks]
(i) Show that the set $\{1,4,7,13\}$ forms a group, under multiplication modulo 15 . [7 marks]
(ii) Find the generators of the group. [6 marks]
(iii) Establish whether the group is cyclic. [2 marks]
(iv) Identify all the subgroups. [3 marks]

Solution

(i) The Cayley table is:

	1	4	7	13
1	1	4	7	13
4	4	1	13	7
7	7	13	4	1
13	13	7	1	4

[3 marks]
The operation is closed. [1 mark]
There is an identity element (1). [1 mark]
The identity element appears in each row, so that each element has an inverse. [1 mark]

Associativity follows from the associativity of ordinary multiplication. [1 mark]

So the conditions for a group are satisfied.
(ii) $4^{2} \equiv 1[1 \mathrm{mark}]$
$7^{2} \equiv 4 ; 7^{3}=4 \times 7=28 \equiv 13 ; 7^{4}=13 \times 7=91 \equiv 1[2$ marks]
$13^{2} \equiv 4 ; 13^{3}=4 \times 13=52 \equiv 7 ; 13^{4}=7 \times 13=91 \equiv 1$
[2 marks]
So 7 and 13 are the generators of the group. [1 mark]
(iii) The elements of the group can be written as:
$1,7,7^{2}, 7^{3}$ (for example), and so the group is cyclic. [2 marks]
[Also, the elements have periods $1,2,4,4$, which is the pattern for a cyclic group of order 4.]
(iv) The subgroups are $\{1\},\{1,4\},\{1,7,4,13\}$ [3 marks]

