# Groups - Q1 [8 marks](25/5/21) 

Exam Boards
OCR : Add. Pure (Year 1)
MEI: -
AQA: Discrete (Year 1)
Edx: -

Multiplication modulo $m$ (or just $\bmod m$ ), denoted by $\times_{m}$, is defined on the set $\{0,1,2, \ldots, m-1\}$ by carrying out ordinary multiplication and taking the remainder when the product is divided by $m$. For example, $5 \times 3=2$.

Show that $\times_{5}$ is a closed and commutative binary operation on the set $\{0,1,2, \ldots, 4\}$, and identify the inverse of each element, where it exists. [8 marks]

Multiplication modulo $m$ (or just $\bmod m$ ), denoted by $\times_{m}$, is defined on the set $\{0,1,2, \ldots, m-1\}$ by carrying out ordinary multiplication and taking the remainder when the product is divided by $m$. For example, $5 \times 3=2$.

Show that $\times_{5}$ is a closed and commutative binary operation on the set $\{0,1,2, \ldots, 4\}$, and identify the inverse of each element, where it exists. [8 marks]

## Solution

(i) The Cayley table is:

| $\times_{\mathbf{5}}$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 |
| 2 | 0 | 2 | 4 | 1 | 3 |
| 3 | 0 | 3 | 1 | 4 | 2 |
| 4 | 0 | 4 | 3 | 2 | 1 |

[3 marks]

As $\times_{5}$ is defined for all pairs of elements of the set, it is a binary operation. [1 mark]

Each of the products in the Cayley table is an element of the set, and so the operation is closed. [1 mark]

It is commuative because of symmetry about the leading diagonal. [1 mark]
[Note: Associativity is harder to establish, but can usually just be asserted in the case of modular addition or multiplication.]

The element 1 leaves all elements unchanged, and is therefore the identity element. [1 mark]

The inverses are as follows:
0 : doesn't exist
1: 1
2: 3
3: 2
4: 4
[1 mark]

