Groups Overview (25/5/21)

Q1 [8 marks]
Multiplication modulo $\boldsymbol{m}($ or just $\bmod \boldsymbol{m})$, denoted by $\times_{\boldsymbol{m}}$, is defined on the set $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{m}-\mathbf{1}\}$ by carrying out ordinary multiplication and taking the remainder when the product is divided by \boldsymbol{m}. For example, $5 \times 3 \mathbf{4}$.

Show that x_{5} is a closed and commutative binary operation on the set $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \mathbf{4}\}$, and identify the inverse of each element, where it exists.

Q2 [18 marks]
(i) Show that the set $\{1,4,7,13\}$ forms a group, under multiplication modulo 15. [7 marks]
(ii) Find the generators of the group. [6 marks]
(iii) Establish whether the group is cyclic. [2 marks]
(iv) Identify all the subgroups. [3 marks]

Q3 [12 marks]
For the group $\left\{x, 1-x, \frac{1}{x}, \frac{1}{1-x}, \frac{x-1}{x}, \frac{x}{x-1}\right\}$ under composition of functions, where $x \in \mathbb{R}, x \neq 0,1$:
(i) Establish whether the group is abelian. [5 marks]
(ii) Find the periods of the elements of the group, and hence identify its proper subgroups. [7 marks]

Q4 [Practice/M]

Establish which of the following groups are isomorphic to each other:
(i) $\{0,1,2,3\}$; addition modulo 4
(ii) $\{1,2,4,8\}$; multiplication modulo 15
(iii) $\{3,6,9,12\}$; multiplication modulo 15
(iv) $\{1,3,5,7\}$; multiplication modulo 8
(v) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\right\}$; matrix multiplication
(vi) $\{1, i,-1,-i\}$; multiplication of complex numbers

