Graphs - Q7 [15 marks] (25/5/21)

Exam Boards
OCR:-
MEI: -
AQA: Pure (Year 1)
Edx: -

Sketch the function $y=\frac{x^{2}}{x-1}$, establishing the location of any local maxima or minima. [15 marks]

Sketch the function $y=\frac{x^{2}}{x-1}$, establishing the location of any local maxima or minima. [15 marks]

Solution

The curve crosses the x-axis at $x=0$ (twice), when $y=0$.
[1 mark]
There is a vertical asymptote at $x=1$. [1 mark]
$x=1+\delta \Rightarrow y=\frac{ \pm}{+}=+[1 \mathrm{mark}]$
$\left[x=1-\delta \Rightarrow y=\frac{+}{-}=-\right]$
To determine the behaviour of the curve as $x \rightarrow \pm \infty$,
$y=\frac{x^{2}}{x-1}=\frac{x^{2}-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}$
Thus, as $x \rightarrow \pm \infty, y \rightarrow x+1$ (an 'oblique' asymptote). [2 marks]
[Note that we cannot say that $\lim _{x \rightarrow \infty} \frac{x^{2}}{x-1}=\lim _{x \rightarrow \infty} \frac{x}{1-\frac{1}{x}}=\frac{x}{1}$,
as $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \infty} f(x)}{\lim _{x \rightarrow \infty} g(x)}$, only when $\lim _{x \rightarrow \infty} f(x)=$ constant, and
$\lim _{x \rightarrow \infty} g(x)=$ constant.]
To see how the curve approaches the oblique asymptote, consider solutions of $\frac{x^{2}}{x-1}=x+1 \Rightarrow x^{2}=x^{2}-1$;
ie there are no points of intersection, and so the curve must be approaching the oblique asymptote from below as $x \rightarrow-\infty$, and from above as $x \rightarrow \infty$. [2 marks]

The local maximum of the curve will be at the Origin, where there is the repeated root of $y=0$. [1 mark]

To find the location of the local minimum, consider solutions of $\frac{x^{2}}{x-1}=k$; ie $x^{2}-k x+k=0$ [1 mark]

For there to be a solution, the discriminant must be non-negative; ie $(-k)^{2}-4 k \geq 0 \Rightarrow k(k-4) \geq 0 \Rightarrow k \leq 0$ or $k \geq 4$ [2 marks]

Thus there are no points of the curve for which $0<y<4$, and so the local minimum occurs when $y=4$ (and $x^{2}-4 x+4=0$
$\Rightarrow x=2) .[2$ marks]

[2 marks]

