Graphs – Q7 [15 marks] (25/5/21)

Exam Boards

OCR : -

MEI: -

AQA: Pure (Year 1)

Edx: -

Sketch the function $y = \frac{x^2}{x-1}$, establishing the location of any local maxima or minima. [15 marks]

Sketch the function $y = \frac{x^2}{x-1}$, establishing the location of any local maxima or minima. [15 marks]

Solution

The curve crosses the *x*-axis at x = 0 (twice), when y = 0.

[1 mark]

There is a vertical asymptote at x = 1. [1 mark]

$$x = 1 + \delta \Rightarrow y = \frac{+}{+} = + [1 \text{ mark}]$$
$$[x = 1 - \delta \Rightarrow y = \frac{+}{-} = -]$$

To determine the behaviour of the curve as $x \to \pm \infty$,

$$y = \frac{x^2}{x-1} = \frac{x^2-1}{x-1} + \frac{1}{x-1} = x + 1 + \frac{1}{x-1}$$

Thus, as $x \to \pm \infty$, $y \to x + 1$ (an 'oblique' asymptote). [2 marks]

[Note that we cannot say that $\lim_{x \to \infty} \frac{x^2}{x-1} = \lim_{x \to \infty} \frac{x}{1-\frac{1}{x}} = \frac{x}{1}$,

as
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)}$$
, only when $\lim_{x \to \infty} f(x)$ =constant, and $\lim_{x \to \infty} g(x)$ =constant.]

To see how the curve approaches the oblique asymptote,

consider solutions of $\frac{x^2}{x-1} = x + 1 \Rightarrow x^2 = x^2 - 1;$

ie there are no points of intersection, and so the curve must be approaching the oblique asymptote from below as $x \to -\infty$, and from above as $x \to \infty$. [2 marks]

The local maximum of the curve will be at the Origin, where there is the repeated root of y = 0. [1 mark]

To find the location of the local minimum, consider solutions of $\frac{x^2}{x-1} = k$; ie $x^2 - kx + k = 0$ [1 mark]

For there to be a solution, the discriminant must be non-negative; ie $(-k)^2 - 4k \ge 0 \Rightarrow k(k-4) \ge 0 \Rightarrow k \le 0$ or $k \ge 4$ [2 marks]

Thus there are no points of the curve for which 0 < y < 4, and so the local minimum occurs when y = 4 (and $x^2 - 4x + 4 = 0$

 $\Rightarrow x = 2$). [2 marks]

[2 marks]