Graphs - Q4 [17 marks](25/5/21)

Exam Boards

OCR:-

MEI: -

AQA: Pure (Year 1)

Edx: -

- (i) Sketch the curve $y = \frac{4x^2 + 5x + 7}{2x + 3}$ [9 marks]
- (ii) Without using calculus, find the coordinates of the stationary points (to 3sf) [8 marks]

(i) Sketch the curve
$$y = \frac{4x^2 + 5x + 7}{2x + 3}$$
 [9 marks]

(ii) Without using calculus, find the coordinates of the stationary points (to 3sf) [8 marks]

Solution

(i) Step 1:
$$x = 0 \Rightarrow y = \frac{7}{3}$$
; [1 mark]

 $4x^2 + 5x + 7 = 4(x + \frac{5}{8})^2 - \frac{25}{16} + 7 > 0$, so that there are no intersections with the *x*-axis [1 mark]

Step 2: vertical asymptote when $2x + 3 = 0 \Rightarrow x = -\frac{3}{2} [1 \text{ mark}]$

$$x = -\frac{3}{2} + \delta \ (\delta > 0 \text{ is small}) \Rightarrow y = \frac{+}{+}; \text{ ie } y > 0 \quad [1 \text{ mark}]$$

$$[x = -\frac{3}{2} - \delta \Rightarrow y = \frac{+}{-}; \text{ ie } y < 0]$$

Step 3: To find $\lim_{x\to\infty} \frac{4x^2+5x+7}{2x+3}$:

$$\frac{4x^2+5x+7}{2x+3} = \frac{4x^2+6x}{2x+3} + \frac{-x+7}{2x+3} = 2x + \frac{-x+\frac{3}{2}}{2x+3} + \frac{-\frac{3}{2}+7}{2x+3}$$

$$=2x-\frac{1}{2}+\frac{11}{2(2x+3)} \ (*)$$

So
$$\lim_{x \to \infty} \frac{4x^2 + 5x + 7}{2x + 3} = 2x - \frac{1}{2}$$

ie there is an oblique asymptote of $y = 2x - \frac{1}{2}$ [2 marks]

(also approached as $x \to -\infty$)

and, from (*), as
$$x \to \infty$$
, $y > 2x - \frac{1}{2}$, and as $x \to -\infty$, $y < 2x - \frac{1}{2}$

[1 mark]

[Note: We can't say $\lim_{x \to \infty} \frac{4x^2 + 5x + 7}{2x + 3} = \lim_{x \to \infty} \frac{4x + 5 + \frac{7}{x}}{2 + \frac{3}{x}} = \frac{4x + 5}{2} = 2x + \frac{5}{2}$ as $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)}$ only when $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} g(x)$ are constants.]

[2 marks]

(ii) To find the stationary points, consider the values of x for which $\frac{4x^2+5x+7}{2x+3}=k$ has repeated roots; [1 mark]

Then
$$4x^2 + 5x + 7 = k(2x + 3)$$

and
$$4x^2 + x(5-2k) + 7 - 3k = 0$$
, [1 mark]

with repeated roots occurring when the discriminant is zero,

so that
$$(5-2k)^2 - 16(7-3k) = 0$$
 [1 mark]

$$\Rightarrow 4k^2 + k(-20 + 48) + 25 - 112 = 0$$

ie
$$4k^2 + 28k - 87 = 0$$

$$\Rightarrow k = \frac{-28 \pm \sqrt{28^2 - 4(4)(-87)}}{8} = 2.33095 \text{ or } -9.33095 \text{ [2 marks]}$$

The corresponding *x*-coordinates are $\frac{-(5-2k)}{8}$;

ie
$$-0.042263$$
 and -2.95774 [2 marks]

So there is a local minimum at (-0.0423,2.33) and a local maximum at (-2.96,-9.33) (3sf). [1 mark]