Geometry - Q5 [Problem/M] (24/5/21)

Referring to the diagram below, the Angle Bisector theorem says that
$\frac{B D}{D C}=\frac{A B}{A C}$
Prove the Angle Bisector Theorem.

Referring to the diagram below, the Angle Bisector theorem says that
$\frac{B D}{D C}=\frac{A B}{A C}$
Prove the Angle Bisector Theorem.

Solution

By the Sine rule for triangle $A B D, \frac{B D}{\sin \theta}=\frac{A B}{\sin A D B}$
and, for triangle ADC, $\frac{D C}{\sin \theta}=\frac{A C}{\sin A D C}=\frac{A C}{\sin A D B}$
Then (1) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{B D}{A B}$ and (2) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{D C}{A C}$
so that $\frac{B D}{A B}=\frac{D C}{A C}$
and hence $\frac{B D}{D C}=\frac{A B}{A C}$

