Geometry – Q4 [Problem/M] (24/5/21)

Show that the shortest distance from the line ax + by = c to the Origin is $\frac{c}{\sqrt{a^2+b^2}}$, for the case where the line has a positive gradient, and a positive *y*-intercept.

[This is analogous to the shortest distance from the plane

 $n_1x + n_2y + n_3z = d$ to the Origin; namely $\frac{d}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$]

Show that the shortest distance from the line ax + by = c to the Origin is $\frac{c}{\sqrt{a^2+b^2}}$, for the case where the line has a positive gradient, and a positive *y*-intercept.

[This is analogous to the shortest distance from the plane

 $n_1 x + n_2 y + n_3 z = d$ to the Origin; namely $\frac{d}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$]

Solution

Method 1 [using $tan\theta$]

Referring to the diagram, $ax + by = c \Rightarrow y = \frac{c}{b} - \frac{a}{b}x$, so that $tan\theta = -\frac{a}{b}$ and $d = \frac{c}{b} \cos\theta = \frac{c}{b} \cdot \frac{1}{\sqrt{tan^2\theta + 1}} = \frac{c}{b} \cdot \frac{1}{\sqrt{\frac{a^2}{b^2} + 1}} = \frac{c}{\sqrt{a^2 + b^2}}$

Method 2 [vectors: shortest distance from a point to a line]

The line has vector eq'n $\underline{r} = \begin{pmatrix} 0 \\ \frac{c}{b} \end{pmatrix} + \lambda \begin{pmatrix} b \\ -a \end{pmatrix}$ (as the gradient is $-\frac{a}{b}$)

Let the point closest to the Origin (*P*, say) have parameter $\lambda = \lambda_P$

Then $\overrightarrow{OP} \cdot \begin{pmatrix} b \\ -a \end{pmatrix} = 0$ so that $\begin{pmatrix} \lambda_P b \\ \frac{c}{b} - \lambda_P a \end{pmatrix} \cdot \begin{pmatrix} b \\ -a \end{pmatrix} = 0$, and $b^2 \lambda_P - \frac{ac}{b} + a^2 \lambda_P = 0$, giving $\lambda_P = \frac{ac}{b(a^2 + b^2)}$ Then $\overrightarrow{OP} = \frac{1}{(a^2 + b^2)} \begin{pmatrix} c \\ b \\ a^2 + b^2 \end{pmatrix} - \frac{a^2 c}{b} \end{pmatrix}$ $= \frac{1}{(a^2 + b^2)} \begin{pmatrix} ac \\ bc \end{pmatrix}$ and $|\overrightarrow{OP}| = \frac{c}{(a^2 + b^2)} \begin{vmatrix} a \\ b \end{vmatrix} = \frac{c}{(a^2 + b^2)} \sqrt{a^2 + b^2} = \frac{c}{\sqrt{a^2 + b^2}}$ Method 3 (similar triangles)

OPA and AOB are similar triangles

So
$$\frac{-\left(\frac{c}{a}\right)}{d} = \frac{AB}{\left(\frac{c}{b}\right)}$$
, and $AB^2 = \left(\frac{c}{a}\right)^2 + \left(\frac{c}{b}\right)^2$
 $\Rightarrow d = \frac{-\left(\frac{c}{a}\right)\left(\frac{c}{b}\right)}{AB} = \frac{-c^2}{ab\sqrt{\left(\frac{c}{a}\right)^2 + \left(\frac{c}{b}\right)^2}} = \frac{c}{\sqrt{b^2 + a^2}}$

(noting that, as a < 0, $a = -\sqrt{a^2}$)

Method 4 (Intersection of perpendicular lines)

Let *L* be the line ax + by = c, and *L'* the line perpendicular to *L*. The gradient of *L* is $-\frac{a}{b}$, and so the gradient of *L'* is $\frac{b}{a}$. Hence the eq'n of *L'* is $y = \frac{b}{a}x$ Let the intersection of *L* & *L'* be (x_P, y_P) . Then $ax_P + b(\frac{b}{a}x_P) = c$ $\Rightarrow x_P(a^2 + b^2) = ac$ Then $d^2 = x_P^2 + y_P^2 = x_P^2(1 + (\frac{b}{a})^2)$, so that $d = (-x_P)\sqrt{\frac{a^2+b^2}{a^2}}$ $(a < 0, c > 0 \Rightarrow x_P < 0)$ $= -\frac{ac}{a^2+b^2}\sqrt{\frac{a^2+b^2}{a^2}}$ $= \frac{c}{\sqrt{a^2+b^2}}$ (a < 0, so that $a = -\sqrt{a^2}$)

Method 5 (trigonometry)

Referring to the diagram for Method 3,

$$tan\theta = \frac{\left(\frac{c}{b}\right)}{\left(-\frac{c}{a}\right)} = -\frac{a}{b}$$
 and $sin\theta = \frac{d}{\left(-\frac{c}{a}\right)} = -\frac{ad}{c}$

Creating a right-angled triangle where $tan\theta = -\frac{a}{b}$, as below, shows that we can also write $sin\theta = \frac{-a}{\sqrt{a^2+b^2}}$

Equating the two expressions for $sin\theta$ then gives

$$-\frac{ad}{c} = \frac{-a}{\sqrt{a^2 + b^2}},$$

so that $d = \frac{c}{\sqrt{a^2 + b^2}}$

Method 6 (stationary point)

Consider a general point *Q* on the line ax + by = c with coordinates (x, y)

Then *d* will be the minimum value of *OQ* as *x* varies,

and $OQ^2 = x^2 + \left(\frac{c-ax}{b}\right)^2$ (1) This occurs when $\frac{d}{dx}(OQ^2) = 0$; ie when $2x + 2\left(\frac{c-ax}{b}\right)\left(-\frac{a}{b}\right) = 0$ $\Rightarrow xb^2 - ca + a^2x = 0$ $\Rightarrow x = \frac{ca}{a^2 + b^2}$ Then, from (1), $OQ^2 = x^2 + \left(\frac{c-ax}{b}\right)^2$

$$= \left(\frac{ca}{a^2 + b^2}\right)^2 + \left(\frac{c(a^2 + b^2) - ca^2}{b(a^2 + b^2)}\right)^2$$
$$= \left(\frac{ca}{a^2 + b^2}\right)^2 + \left(\frac{cb}{a^2 + b^2}\right)^2$$
$$= \frac{c^2(a^2 + b^2)}{(a^2 + b^2)^2}$$

and $d = OQ = \frac{c}{\sqrt{a^2 + b^2}}$