Geometry - Q4 [Problem/M] (24/5/21)

Show that the shortest distance from the line $a x+b y=c$ to the Origin is $\frac{c}{\sqrt{a^{2}+b^{2}}}$, for the case where the line has a positive gradient, and a positive y-intercept.
[This is analogous to the shortest distance from the plane $n_{1} x+n_{2} y+n_{3} z=d$ to the Origin; namely $\left.\frac{d}{\sqrt{n_{1}{ }^{2}+n_{2}^{2}+n_{3}^{2}}}\right]$

Show that the shortest distance from the line $a x+b y=c$ to the Origin is $\frac{c}{\sqrt{a^{2}+b^{2}}}$, for the case where the line has a positive gradient, and a positive y-intercept.
[This is analogous to the shortest distance from the plane $n_{1} x+n_{2} y+n_{3} z=d$ to the Origin; namely $\left.\frac{d}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}\right]$

Solution

Method 1 [using $\tan \theta]$

Referring to the diagram, $a x+b y=c \Rightarrow y=\frac{c}{b}-\frac{a}{b} x$, so that $\tan \theta=-\frac{a}{b}$
and $d=\frac{c}{b} \cos \theta=\frac{c}{b} \cdot \frac{1}{\sqrt{\tan ^{2} \theta+1}}=\frac{c}{b} \cdot \frac{1}{\sqrt{\frac{a^{2}}{b^{2}}+1}}=\frac{c}{\sqrt{a^{2}+b^{2}}}$
Method 2 [vectors: shortest distance from a point to a line]
The line has vector eq'n $\underline{r}=\binom{0}{\frac{c}{b}}+\lambda\binom{b}{-a}$ (as the gradient is $-\frac{a}{b}$)

Let the point closest to the $\operatorname{Origin}\left(P\right.$, say) have parameter $\lambda=\lambda_{P}$
Then $\overrightarrow{O P} \cdot\binom{b}{-a}=0$
so that $\binom{\lambda_{P} b}{\frac{c}{b}-\lambda_{P} a} \cdot\binom{b}{-a}=0$,
and $b^{2} \lambda_{P}-\frac{a c}{b}+a^{2} \lambda_{P}=0$,
giving $\lambda_{P}=\frac{a c}{b\left(a^{2}+b^{2}\right)}$
Then $\overrightarrow{O P}=\frac{1}{\left(a^{2}+b^{2}\right)}\binom{a c}{\frac{c}{b}\left(a^{2}+b^{2}\right)-\frac{a^{2} c}{b}}$
$=\frac{1}{\left(a^{2}+b^{2}\right)}\binom{a c}{b c}$
and $|\overrightarrow{O P}|=\frac{c}{\left(a^{2}+b^{2}\right)}\left|\begin{array}{l}a \\ b\end{array}\right|=\frac{c}{\left(a^{2}+b^{2}\right)} \sqrt{a^{2}+b^{2}}=\frac{c}{\sqrt{a^{2}+b^{2}}}$
Method 3 (similar triangles)

OPA and AOB are similar triangles
So $\frac{-\left(\frac{c}{a}\right)}{d}=\frac{A B}{\left(\frac{c}{b}\right)}$, and $A B^{2}=\left(\frac{c}{a}\right)^{2}+\left(\frac{c}{b}\right)^{2}$
$\Rightarrow d=\frac{-\left(\frac{c}{a}\right)\left(\frac{c}{b}\right)}{A B}=\frac{-c^{2}}{a b \sqrt{\left(\frac{c}{a}\right)^{2}+\left(\frac{c}{b}\right)^{2}}}=\frac{c}{\sqrt{b^{2}+a^{2}}}$
(noting that, as $a<0, a=-\sqrt{a^{2}}$)
Method 4 (Intersection of perpendicular lines)
Let L be the line $a x+b y=c$, and L^{\prime} the line perpendicular to L.
The gradient of L is $-\frac{a}{b}$, and so the gradient of L^{\prime} is $\frac{b}{a}$.
Hence the eq'n of L^{\prime} is $y=\frac{b}{a} x$
Let the intersection of $L \& L^{\prime}$ be $\left(x_{P}, y_{P}\right)$.
Then $a x_{P}+b\left(\frac{b}{a} x_{P}\right)=c$
$\Rightarrow x_{P}\left(a^{2}+b^{2}\right)=a c$
Then $d^{2}=x_{P}^{2}+y_{P}^{2}=x_{P}^{2}\left(1+\left(\frac{b}{a}\right)^{2}\right)$,
so that $d=\left(-x_{P}\right) \sqrt{\frac{a^{2}+b^{2}}{a^{2}}} \quad\left(a<0, c>0 \Rightarrow x_{P}<0\right)$
$=-\frac{a c}{a^{2}+b^{2}} \sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$
$=\frac{c}{\sqrt{a^{2}+b^{2}}}\left(a<0\right.$, so that $\left.a=-\sqrt{a^{2}}\right)$

Method 5 (trigonometry)
Referring to the diagram for Method 3,
$\tan \theta=\frac{\left(\frac{c}{b}\right)}{\left(-\frac{c}{a}\right)}=-\frac{a}{b}$ and $\sin \theta=\frac{d}{\left(-\frac{c}{a}\right)}=-\frac{a d}{c}$
Creating a right-angled triangle where $\tan \theta=-\frac{a}{b}$, as below, shows that we can also write $\sin \theta=\frac{-a}{\sqrt{a^{2}+b^{2}}}$

Equating the two expressions for $\sin \theta$ then gives
$-\frac{a d}{c}=\frac{-a}{\sqrt{a^{2}+b^{2}}}$,
so that $d=\frac{c}{\sqrt{a^{2}+b^{2}}}$

Method 6 (stationary point)
Consider a general point Q on the line $a x+b y=c$ with coordinates (x, y)

Then d will be the minimum value of $O Q$ as x varies, and $O Q^{2}=x^{2}+\left(\frac{c-a x}{b}\right)^{2}$

This occurs when $\frac{d}{d x}\left(O Q^{2}\right)=0$;
ie when $2 x+2\left(\frac{c-a x}{b}\right)\left(-\frac{a}{b}\right)=0$
$\Rightarrow x b^{2}-c a+a^{2} x=0$
$\Rightarrow x=\frac{c a}{a^{2}+b^{2}}$

Then, from (1), $O Q^{2}=x^{2}+\left(\frac{c-a x}{b}\right)^{2}$
$=\left(\frac{c a}{a^{2}+b^{2}}\right)^{2}+\left(\frac{c\left(a^{2}+b^{2}\right)-c a^{2}}{b\left(a^{2}+b^{2}\right)}\right)^{2}$
$=\left(\frac{c a}{a^{2}+b^{2}}\right)^{2}+\left(\frac{c b}{a^{2}+b^{2}}\right)^{2}$
$=\frac{c^{2}\left(a^{2}+b^{2}\right)}{\left(a^{2}+b^{2}\right)^{2}}$
and $d=O Q=\frac{c}{\sqrt{a^{2}+b^{2}}}$

