Geometry Overview (24/5/21)

Q1 [Practice/E]

Show that the area of triangle ABC is given by

$$
\frac{1}{2} \sqrt{|\overrightarrow{A B}|^{2}|\overrightarrow{A C}|^{2}-(\overrightarrow{A B} \cdot \overrightarrow{A C})^{2}}
$$

Q2 [Practice/E]

Find as many ways as possible of deriving the equation of the sloping side of the trapezium shown below.

Q3 [Practice/E]

Find the equation of the circle passing through the points A $(2,8), B(7,3)$ and $D(5,7)$

Q4 [Problem/M]

Show that the shortest distance from the line $a x+b y=c$ to the Origin is $\frac{c}{\sqrt{a^{2}+b^{2}}}$, for the case where the line has a positive gradient, and a positive y-intercept.
[This is analogous to the shortest distance from the plane $n_{1} x+n_{2} y+n_{3} z=d$ to the Origin; namely $\left.\frac{d}{\sqrt{n_{1}{ }^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}}}\right]$

Q5 [Problem/M]

Referring to the diagram below, the Angle Bisector theorem says that
$\frac{B D}{D C}=\frac{A B}{A C}$
Prove the Angle Bisector Theorem.

ABC is a triangle circumscribed by a circle of radius R, as shown in the diagram below.

Show that (i) $\frac{a}{\sin A}=2 R$ (ii) the area of the triangle is $\frac{a b c}{4 R}$

