Geometric \& Negative Binomial Distributions

(5 pages; 26/4/24)

Geometric Distribution

(1) Let X be the number of attempts needed to achieve a success, where the probability of success at each attempt is p (a constant).
(The attempts are assumed to be independent.)
Then $X \sim G e o(p)$ (a discrete distribution)
and $P(X=r)=(1-p)^{r-1} p \quad$, for $r=1,2, \ldots$
[ie $r-1$ failures, followed by a success]
(2) To confirm that $(1-p)^{r-1} p$ is a pdf:
$\sum_{r=1}^{\infty}(1-p)^{r-1} p=\frac{p}{1-(1-p)}=1$
[being the sum of a geometric series, with 1st term p and common ratio $1-p$]
(3) $E(X)=\sum_{r=1}^{\infty} r(1-p)^{r-1} p=-p \frac{d}{d p} \sum_{r=1}^{\infty}(1-p)^{r}$
$=-p \frac{d}{d p}\left\{\frac{1-p}{1-(1-p)}\right\}=-p \frac{d}{d p}\left\{\frac{1}{p}-1\right\}=-p\left(-\frac{1}{p^{2}}\right)=\frac{1}{p}$
(4) $E(X(X-1))=\sum_{r=1}^{\infty} r(r-1)(1-p)^{r-1} p$

Now $\frac{d}{d p}\left\{(1-p)^{r}\right\}=-r(1-p)^{r-1}$
and $\frac{d}{d p}\left\{-r(1-p)^{r-1}\right\}=r(r-1)(1-p)^{r-2}$,
so that $r(r-1)(1-p)^{r-1} p=p(1-p)\left\{r(r-1)(1-p)^{r-2}\right\}$
$=p(1-p) \frac{d^{2}}{d p^{2}}\left\{(1-p)^{r}\right\}$
and $E(X(X-1))=p(1-p) \sum_{r=1}^{\infty} \frac{d^{2}}{d p^{2}}\left\{(1-p)^{r}\right\}$
$=p(1-p) \frac{d^{2}}{d p^{2}}\left\{\sum_{r=1}^{\infty}(1-p)^{r}\right\}$
$=p(1-p) \frac{d^{2}}{d p^{2}}\left\{\frac{1-p}{1-(1-p)}\right\}=p(1-p) \frac{d^{2}}{d p^{2}}\left\{\frac{1}{p}-1\right\}$
$=p(1-p) \frac{d}{d p}\left\{-\frac{1}{p^{2}}\right\}=p(1-p)\left(\frac{2}{p^{3}}\right)=\frac{2(1-p)}{p^{2}}$
Then $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
$=E(X(X-1))+E(X)-[E(X)]^{2}$
$=\frac{2(1-p)}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{1}{p^{2}}(2-2 p+p-1)=\frac{1-p}{p^{2}}$ or $\frac{q}{p^{2}}$
(5) Cumulative probabilities

Approach A

$P(X \leq k)=1-P(X>k)=1-P(k$ failures $)$
$=1-(1-p)^{k}$

Approach B

$P(X \leq k)=\sum_{r=1}^{k}(1-p)^{r-1} p=\frac{p\left\{1-(1-p)^{k}\right\}}{1-(1-p)}$
[the sum of k terms of a geometric series with 1 st term p and common ratio $1-p$]
$=1-(1-p)^{k}$
(6) Probability generating function [see "PGFs"]
$G_{X}(s)=E\left(s^{X}\right)=\sum_{k=0}^{\infty} p_{k} s^{k}=\sum_{k=1}^{\infty} q^{k-1} p s^{k}$
$=p s \sum_{k=1}^{\infty}(q s)^{k-1}=\frac{p s}{1-q s}$ if $|q s|<1$; ie $|s|<\frac{1}{q}$
$G_{X}^{\prime}(s)=\frac{(1-q s) p-p s(-q)}{(1-q s)^{2}}=\frac{p}{(1-q s)^{2}}$
and $G^{\prime \prime}{ }_{X}(s)=\frac{-2(-q) p}{(1-q s)^{3}}=\frac{2 q p}{(1-q s)^{3}}$
Then $E[X]=G_{X}^{\prime}(1)=\frac{1}{p}$
and $\operatorname{Var}(X)=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left[G_{X}^{\prime}(1)\right]^{2}$
$=\frac{2 q}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{2(1-p)+p-1}{p^{2}}=\frac{1-p}{p^{2}}$ or $\frac{q}{p^{2}}$

Negative Binomial Distribution

(1) Let Y be the number of attempts needed to achieve n successes, where the probability of success at each attempt is p (a constant), and the attempts are assumed to be independent.

Then the following notation is sometimes used:
$Y \sim n b(n, p)$ (a discrete distribution)
and $P(Y=r)=\binom{r-1}{n-1} p^{n-1} q^{(r-1)-(n-1)} p$
[The probability of achieving $n-1$ successes, followed by ($r-1$) - ($n-1$) failures (making a total of $r-1$ attempts), and then one success, is $p^{n-1} q^{(r-1)-(n-1)} p$, and $\binom{r-1}{n-1}$ is the number of ways of having $n-1$ successes
amongst $r-1$ attempts.]
$=\binom{r-1}{n-1} p^{n} q^{k-n}$, for $r=n, n+1, \ldots$

Notes

(i) The Geometric distribution is the special case of the Negative Binomial distribution when $n=1$.
(ii) The Negative Binomial distribution is (sometimes) said to get its name from the fact that it is effectively measuring the number of failures occurring before n successes are achieved.
(2) Probability generating function of Y
(i) $Y=X_{1}+\cdots+X_{n}$, where $X_{i} \sim G e o(p)$
(ii) $G_{X_{1}+X_{2}}(s)=G_{X_{1}}(s) G_{X_{2}}(s)$, where $X_{1} \& X_{2}$ are independent random variables [see "PGFs"]
(iii) $G_{X_{i}}(s)=\frac{p s}{1-q s}$, so that (extending (i) to a sum of n variables) $G_{Y}(s)=\left(\frac{p s}{1-q s}\right)^{n}$
(3) Derivation of $E(Y)$
$G_{Y}(s)=\left(\frac{p s}{1-q s}\right)^{n}$
So $G_{Y}^{\prime}(s)=n\left(\frac{p s}{1-q s}\right)^{n-1} \cdot \frac{(1-q s) p-p s(-q)}{(1-q s)^{2}}$ (by the Quotient rule)
$=n\left(\frac{p s}{1-q s}\right)^{n-1} \cdot \frac{p}{(1-q s)^{2}}=\frac{n p^{n} s^{n-1}}{(1-q s)^{n+1}}$
and $E(Y)=G_{Y}^{\prime}(1)=\frac{n p^{n}}{p^{n+1}}=\frac{n}{p}$
(4) Derivation of $\operatorname{Var}(Y)$
$\operatorname{Var}(Y)=G_{Y}^{\prime \prime}(1)+G_{Y}^{\prime}(1)-\left[G_{Y}^{\prime}(1)\right]^{2}$
From (3), $G_{Y}^{\prime}(s)=\frac{n p^{n} s^{n-1}}{(1-q s)^{n+1}}$,
so that, by the Quotient rule,
$G_{Y}^{\prime \prime}(s)=\frac{n p^{n}\left[(1-q s)^{n+1}(n-1) s^{n-2}-s^{n-1}(n+1)(1-q s)^{n}(-q)\right]}{(1-q s)^{2(n+1)}}$
and hence $G_{Y}^{\prime \prime}(1)=\frac{n p^{n}\left[p^{n+1}(n-1)-(n+1) p^{n}(-q)\right]}{p^{2(n+1)}}$
$=\frac{n[p(n-1)+(n+1) q]}{p^{2}}$
$=\frac{n[n(p+q)+q-p]}{p^{2}}$
$=\frac{n[n+q-p]}{p^{2}}$
Then $\operatorname{Var}(Y)=G_{Y}^{\prime \prime}(1)+G_{Y}^{\prime}(1)-\left[G_{Y}^{\prime}(1)\right]^{2}$
$=\frac{n[n+q-p]}{p^{2}}+\frac{n}{p}-\left(\frac{n}{p}\right)^{2}$
$=\frac{n[n+q-p+p-n]}{p^{2}}$
$=\frac{n q}{p^{2}}$

