Ellipses - Exercises (Solutions) (3 pages; 18/8/19)

(1) Show that the equation of the tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 at the point (x_1, y_1) is $\frac{yy_1}{b^2} + \frac{xx_1}{a^2} = 1$

Solution

Differentiating gives
$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$
, so that $\frac{dy}{dx} = -\frac{xb^2}{ya^2}$

Then the tangent at (x_1, y_1) is $\frac{y - y_1}{x - x_1} = -\frac{x_1 b^2}{y_1 a^2}$,

or
$$yy_1a^2 - y_1^2a^2 = -xx_1b^2 + x_1^2b^2$$

and hence
$$\frac{yy_1}{b^2} - \frac{{y_1}^2}{b^2} = -\frac{xx_1}{a^2} + \frac{{x_1}^2}{a^2}$$

or
$$\frac{yy_1}{b^2} + \frac{xx_1}{a^2} = \frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2}$$

As
$$(x_1, y_1)$$
 lies on the ellipse, $\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} = 1$,

so we have $\frac{yy_1}{h^2} + \frac{xx_1}{a^2} = 1$ as the equation of the tangent.

(2) Given the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and circle $x^2 + y^2 = a^2$, let l_1 be the tangent to the ellipse at the point $(acos\theta, bsin\theta)$ and l_2 be the tangent to the circle at the point $(acos\theta, asin\theta)$. Find the locus of the point of intersection of $l_1 \& l_2$, as θ varies.

Solution

The equation of
$$l_1$$
 is $\frac{y-bsin\theta}{x-acos\theta} = \frac{dy}{dx}/_{d\theta} = \frac{bcos\theta}{-asin\theta}$ (1)

The equation of
$$l_2$$
 is $\frac{y-asin\theta}{x-acos\theta} = \frac{dy}{dx}\Big|_{d\theta} = \frac{acos\theta}{-asin\theta}$ (2)

At the intersection of $l_1 \& l_2$,

$$x - a\cos\theta = \frac{-a\sin\theta}{b\cos\theta}(y - b\sin\theta)$$
 from (1)

and
$$x - a\cos\theta = \frac{-\sin\theta}{\cos\theta}(y - a\sin\theta)$$
 from (2),

so that
$$\left(\frac{a}{b}\right)(y - b\sin\theta) = y - a\sin\theta$$

$$\Rightarrow ay - absin\theta = by - absin\theta$$

 \Rightarrow y = 0, as $a \neq b$ (otherwise the ellipse would be a circle)

Then, from (2),
$$x - a\cos\theta = \frac{a\sin^2\theta}{\cos\theta}$$
,

so that
$$x\cos\theta = a\cos^2\theta + a\sin^2\theta = a$$
, and thus $x = \frac{a}{\cos\theta}$

As
$$-1 < cos\theta < 1$$
, x can take values in the range $(-\infty, -a] \& [a, \infty)$

Thus the required locus is the set of points on the x-axis in the above range.

(3) Show that the area within the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab

Solution

Area =
$$4 \int_0^a b \sqrt{1 - \frac{x^2}{a^2}} dx$$

Let $x = asin\theta$, so that $dx = acos\theta \ d\theta$

Then Area =
$$4b \int_0^{\frac{\pi}{2}} cos\theta \cdot acos\theta \ d\theta$$

$$=2ab\int_0^{\frac{\pi}{2}}1+cos2\theta\ d\theta$$

$$=2ab\left[\theta+\frac{1}{2}sin2\theta\right]\frac{\pi}{2}$$

$$=2ab\left(\frac{\pi}{2}\right)=\pi ab$$