Ellipses - Exercises (1 page; 18/8/19)

See also the separate note "Ellipses" for further exercises.

(1) Show that the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point (x_1, y_1) is $\frac{yy_1}{b^2} + \frac{xx_1}{a^2} = 1$

(2) Given the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and circle $x^2 + y^2 = a^2$, let l_1 be the tangent to the ellipse at the point ($acos\theta$, $bsin\theta$) and l_2 be the tangent to the circle at the point ($acos\theta$, $asin\theta$). Find the locus of the point of intersection of $l_1 \& l_2$, as θ varies.

(3) Show that the area within the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab