Ellipses - Exercises (1 page; 17/2/20) See also the separate note "Ellipses" for further exercises. ## Key to difficulty: - * easier - ** moderate - *** harder (1^{**}) Show that the equation of the tangent to the ellipse $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$ at the point (x_1, y_1) is $\frac{yy_1}{b^2} + \frac{xx_1}{a^2} = 1$ (2^{***}) Given the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and circle $x^2 + y^2 = a^2$, let l_1 be the tangent to the ellipse at the point $(a\cos\theta, b\sin\theta)$ and l_2 be the tangent to the circle at the point $(a\cos\theta, a\sin\theta)$. Find the locus of the point of intersection of $l_1 \& l_2$, as θ varies. (3***) Show that the area within the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab