Ellipses Q2 [11 marks] (23/5/21)

Exam Boards

OCR : -

MEI: -

AQA: -

Edx: Further Pure 1 (Year 2)

Given the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and circle $x^2 + y^2 = a^2$, let l_1 be the tangent to the ellipse at the point ($acos\theta$, $bsin\theta$) and l_2 be the tangent to the circle at the point ($acos\theta$, $asin\theta$). Find the locus of the point of intersection of $l_1 \& l_2$, as θ varies.

Given the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and circle $x^2 + y^2 = a^2$, let l_1 be the tangent to the ellipse at the point ($acos\theta$, $bsin\theta$) and l_2 be the tangent to the circle at the point ($acos\theta$, $asin\theta$). Find the locus of the point of intersection of $l_1 \& l_2$, as θ varies.

Solution

The equation of l_1 is $\frac{y-bsin\theta}{x-acos\theta} = \frac{dy}{dx} = \frac{bcos\theta}{-asin\theta}$ (1) [2 marks] The equation of l_2 is $\frac{y-asin\theta}{x-acos\theta} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{acos\theta}{-asin\theta}$ (2) [2 marks] At the intersection of $l_1 \& l_2$, $x - a\cos\theta = \frac{-a\sin\theta}{b\cos\theta}(y - b\sin\theta)$ from (1) and $x - a\cos\theta = \frac{-\sin\theta}{\cos\theta}(y - a\sin\theta)$ from (2), so that $\left(\frac{a}{b}\right)(y - bsin\theta) = y - asin\theta$ [2 marks] $\Rightarrow ay - absin\theta = by - absin\theta$ \Rightarrow *y* = 0, as *a* \neq *b* (otherwise the ellipse would be a circle) [1 mark] Then, from (2), $x - a\cos\theta = \frac{a\sin^2\theta}{\cos\theta}$, so that $x\cos\theta = a\cos^2\theta + a\sin^2\theta = a$, and thus $x = \frac{a}{\cos\theta}$ [2 marks]

As $-1 < cos\theta < 1$, *x* can take values in the range $(-\infty, -a] \& [a, \infty)$

Thus the required locus is the set of points on the *x*-axis in the above range. [2 marks]