Ellipses Q2 [11 marks] (23/5/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 2)

Given the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and circle $x^{2}+y^{2}=a^{2}$, let l_{1} be the tangent to the ellipse at the point $(a \cos \theta, b \sin \theta)$ and l_{2} be the tangent to the circle at the point $(a \cos \theta, a \sin \theta)$. Find the locus of the point of intersection of $l_{1} \& l_{2}$, as θ varies.

Given the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and circle $x^{2}+y^{2}=a^{2}$, let l_{1} be the tangent to the ellipse at the point $(a \cos \theta, b \sin \theta)$ and l_{2} be the tangent to the circle at the point $(a \cos \theta, a \sin \theta)$. Find the locus of the point of intersection of $l_{1} \& l_{2}$, as θ varies.

Solution

The equation of l_{1} is $\frac{y-b \sin \theta}{x-a \cos \theta}=\frac{d y / d \theta}{d x / d \theta}=\frac{b \cos \theta}{-a \sin \theta}$ (1) [2 marks]
The equation of l_{2} is $\frac{y-a \sin \theta}{x-a \cos \theta}=\frac{d y / d \theta}{d x / d \theta}=\frac{a \cos \theta}{-a \sin \theta}$ (2) [2 marks]
At the intersection of $l_{1} \& l_{2}$,
$x-a \cos \theta=\frac{-a \sin \theta}{b \cos \theta}(y-b \sin \theta)$ from
and $x-a \cos \theta=\frac{-\sin \theta}{\cos \theta}(y-a \sin \theta)$ from (2),
so that $\left(\frac{a}{b}\right)(y-b \sin \theta)=y-a \sin \theta$ [2 marks]
$\Rightarrow a y-a b \sin \theta=b y-a b \sin \theta$
$\Rightarrow y=0$, as $a \neq b$ (otherwise the ellipse would be a circle)
[1 mark]
Then, from (2), $x-a \cos \theta=\frac{a \sin ^{2} \theta}{\cos \theta}$,
so that $x \cos \theta=a \cos ^{2} \theta+a \sin ^{2} \theta=a$, and thus $x=\frac{a}{\cos \theta}$
[2 marks]
As $-1<\cos \theta<1, x$ can take values in the range $(-\infty,-a] \&[a, \infty)$
Thus the required locus is the set of points on the x-axis in the above range. [2 marks]

