Ellipses Q1 - Practice/E (23/5/21)

Show that the equation of the tangent to the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ is $\frac{y y_{1}}{b^{2}}+\frac{x x_{1}}{a^{2}}=1$

Show that the equation of the tangent to the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ is $\frac{y y_{1}}{b^{2}}+\frac{x x_{1}}{a^{2}}=1$

Solution

Differentiating gives $\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0$, so that $\frac{d y}{d x}=-\frac{x b^{2}}{y a^{2}}$
Then the tangent at $\left(x_{1}, y_{1}\right)$ is $\frac{y-y_{1}}{x-x_{1}}=-\frac{x_{1} b^{2}}{y_{1} a^{2}}$,
or $y y_{1} a^{2}-y_{1}{ }^{2} a^{2}=-x x_{1} b^{2}+x_{1}{ }^{2} b^{2}$
and hence $\frac{y y_{1}}{b^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}=-\frac{x x_{1}}{a^{2}}+\frac{x_{1}{ }^{2}}{a^{2}}$
or $\frac{y y_{1}}{b^{2}}+\frac{x x_{1}}{a^{2}}=\frac{x_{1}{ }^{2}}{a^{2}}+\frac{y_{1}{ }^{2}}{b^{2}}$
As $\left(x_{1}, y_{1}\right)$ lies on the ellipse, $\frac{x_{1}{ }^{2}}{a^{2}}+\frac{y_{1}{ }^{2}}{b^{2}}=1$,
so we have $\frac{y y_{1}}{b^{2}}+\frac{x x_{1}}{a^{2}}=1$ as the equation of the tangent.

