Ellipses Overview (26/5/21)

Q1 [Practice/E]

Show that the equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ is $\frac{y y_{1}}{b^{2}}+\frac{x x_{1}}{a^{2}}=1$

Q2 [11 marks]

Given the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and circle $x^{2}+y^{2}=a^{2}$, let l_{1} be the tangent to the ellipse at the point $(a \cos \theta, b \sin \theta)$ and l_{2} be the tangent to the circle at the point $(a \cos \theta, a \sin \theta)$. Find the locus of the point of intersection of $l_{1} \& l_{2}$, as θ varies.

Q3 [6 marks]

Show that the area within the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$

