Differentiation – Q3 [9 marks](22/5/21)

Exam Boards

OCR : AL (Year 1)

MEI: AL (Year 1)

AQA: AL (Year 1)

Edx: AL (Year 1)

Find the turning points of $y = (x^2 - 4x + 3)^2$, and hence sketch the curve. [9 marks]

Find the turning points of $y = (x^2 - 4x + 3)^2$, and hence sketch the curve. [9 marks]

Solution

Method 1

As
$$x^2 - 4x + 3 = (x - 1)(x - 3)$$
,
 $y = (x - 1)^2(x - 3)^2$ [1 mark]
Then $\frac{dy}{dx} = 2(x - 1)(x - 3)^2 + (x - 1)^2(2)(x - 3)$
 $= 2(x - 1)(x - 3)(x - 3 + x - 1)$
 $= 4(x - 1)(x - 3)(x - 2)$ [2 marks]
 $\frac{dy}{dx} = 0$ when $x = 1, 2 \& 3$ [1 mark]

At x = 1, $\frac{dy}{dx}$ changes from –ve to +ve, indicating a min. point.

At x = 2, $\frac{dy}{dx}$ changes from +ve to -ve, indicating a max. point.

At x = 3, $\frac{dy}{dx}$ changes from –ve to +ve, indicating a min. point.

[2 marks]

The min. points are therefore (1,0) and (3,0), whilst the max. is at (2,1). [1 mark]

[2 marks]

Method 2

 $(x^2 - 4x + 3)^2 \ge 0$ and $(x^2 - 4x + 3)^2 = (x - 1)^2(x - 3)^2 = 0$ has roots at x = 1 & 3, so that there are minima at these two points.

For x = 1 - t, $y = x^2 - 4x + 3$ and hence $y = (x^2 - 4x + 3)^2$ increases as t increases, and similarly for x = 3 + t.

For 1 < x < 3, $y = (x^2 - 4x + 3)^2$ attains a max. when $x^2 - 4x + 3$ (which is negative in this range) is at a min.; ie when x = 2.