Differentiation - Q3 [9 marks](22/5/21)

Exam Boards
OCR : AL (Year 1)
MEI: AL (Year 1)
AQA: AL (Year 1)
Edx: AL (Year 1)

Find the turning points of $y=\left(x^{2}-4 x+3\right)^{2}$, and hence sketch the curve. [9 marks]

Find the turning points of $y=\left(x^{2}-4 x+3\right)^{2}$, and hence sketch the curve. [9 marks]

Solution

Method 1

As $x^{2}-4 x+3=(x-1)(x-3)$,
$y=(x-1)^{2}(x-3)^{2}$ [1 mark]
Then $\frac{d y}{d x}=2(x-1)(x-3)^{2}+(x-1)^{2}(2)(x-3)$
$=2(x-1)(x-3)(x-3+x-1)$
$=4(x-1)(x-3)(x-2)$ [2 marks]
$\frac{d y}{d x}=0$ when $x=1,2 \& 3[1$ mark]
At $x=1, \frac{d y}{d x}$ changes from -ve to +ve , indicating a min. point.
At $x=2, \frac{d y}{d x}$ changes from + ve to - ve, indicating a max. point.
At $x=3, \frac{d y}{d x}$ changes from -ve to +ve , indicating a min. point.
[2 marks]
The min. points are therefore $(1,0)$ and $(3,0)$, whilst the max. is at $(2,1)$. [1 mark]

[2 marks]

Method 2

$\left(x^{2}-4 x+3\right)^{2} \geq 0$ and $\left(x^{2}-4 x+3\right)^{2}=(x-1)^{2}(x-3)^{2}=0$ has roots at $x=1 \& 3$, so that there are minima at these two points.

For $x=1-t, y=x^{2}-4 x+3$ and hence $y=\left(x^{2}-4 x+3\right)^{2}$ increases as tincreases, and similarly for $x=3+t$.

For $1<x<3, \mathrm{y}=\left(x^{2}-4 x+3\right)^{2}$ attains a max. when $x^{2}-4 x+3$ (which is negative in this range) is at a min. ; ie when $x=2$.

