Differentiation - Notes (4 pages; 3/9/18)

(1) Derivative of e^{x}

(i) Consider the example of compound interest, where interest is added at the rate of $100 \mathrm{p} \%$ pa, so that an amount x grows to $x(1+p)^{t}$ after t years.

If t is replaced by the small period δt, the increase in x over the period δt is $x(1+p)^{\delta t}-x$
$=x(1+p \delta t+o(\delta t))-x=x p \delta t+o(\delta t) \quad($ where $|p|<1)$
[where $o(\delta t)$ means "terms of order smaller than δt " (ie involving $(\delta t)^{2}$ and higher powers)]

Thus $\frac{d x}{d t}=\lim _{\delta t \rightarrow 0} \frac{x p \delta t+o(\delta t)}{\delta t}=p x$

This has also been found to be an appropriate model for population growth; ie $\frac{d P}{d t}=k P$, and Newton's law of cooling is $\frac{d T}{d t}=-k T$
(ii) The function $y=e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ can easily be seen to have the property that $\frac{d}{d x}\left(e^{x}\right)=e^{x}$, on differentiating term by term. And, by the Chain rule, $\frac{d}{d x}\left(e^{k x}\right)=k e^{k x}$.

Thus a solution of $\frac{d P}{d t}=k P$, for example, is $P=P_{0} e^{k t}$, with P_{0} being $P(0)$, the initial population.
(iii) The function $y=e^{x}$ is the special case of the family $y=a^{x}$ where the gradient at $x=0$ is 1 (for the purpose of sketching $\left.y=e^{x}\right)$.

It is shown later on that $\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x}$
It is possible to express the solution of $\frac{d P}{d t}=k P$ as $P=P_{0} a^{\lambda t}$, as follows:

Let $P=P_{0} a^{\lambda t}$, so that $\frac{d P}{d t}=\lambda \ln a . P_{0} a^{\lambda t}$
Then let $k=\lambda l n a$, to give $P=P_{0} a^{\left(\frac{k t}{l n a}\right)}$
Thus e is just the value of a that gives the simplest from of the solution.

(2) Derivative of $\ln x$

$y=\ln x$ is the inverse function of $y=e^{x}$, and therefore its reflection in the line $y=x$

The gradient of one of these two curves is the reciprocal of the other at the reflected point. (Consider, for example, what is happening when $x=2$ for $y=\ln x: y=2$ at the reflected point on $y=e^{x}$, and the tangents to the two curves have reciprocal gradients, because the roles of x and y are being reversed.)
Suppose that $e^{a}=b$, so that $a=\ln b$. (Consider, for example, where $b=2$ and $a=0.693$ (3sf).)
Then $\left.\frac{d}{d x}(\ln x)\right|_{x=b}=\frac{1}{\frac{d}{d x}\left(\left.e^{x}\right|_{x=a}\right)}=\frac{1}{e^{a}}=\frac{1}{b}$
Since this is true for all values of x in the domain of $y=\ln x$, we can say that $\frac{d}{d x}(\ln x)=\frac{1}{x}$

Alternative approach 1 (informal)

When $y=e^{x}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=y$. In order to obtain the derivative of $\ln x$, we reverse the roles of $x \& y$, so that $\frac{d x}{d y}=x$, giving $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$

Alternative approach 2

$y=e^{x} \Rightarrow x=\ln y$
Then, differentiating both sides wrt x,
$1=\frac{d}{d y} \ln y \cdot \frac{d y}{d x} \Rightarrow \frac{d}{d y} \ln y=\frac{1}{\left(\frac{d y}{d x}\right)}=\frac{1}{e^{x}}=\frac{1}{y}$
Relabelling we then have $\frac{d}{d x} \ln x=\frac{1}{x}$

(3) Differentiating a^{x} (two methods)

(a) Let $y=a^{x}$

Then $\ln y=x \ln a$

Differentiating implicitly gives $\frac{1}{y} \frac{d y}{d x}=\ln a$, so that $\frac{d y}{d x}=\ln a . a^{x}$
(b) Let $y=a^{x}$ and let $a=e^{b}$
(it is assumed that $a>0$; the result (*) also implies this)
Then $y=\left(e^{b}\right)^{x}=e^{b x}$
and $\frac{d y}{d x}=b e^{b x}=\ln a \cdot a^{x}$

Note: When $a=e, \ln a=1$ (which may help to recall the result).

