Differentiation - Notes (4 pages; 3/9/18)

(1) Derivative of e^x

(i) Consider the example of compound interest, where interest is added at the rate of 100p% pa, so that an amount x grows to $x(1+p)^t$ after t years.

If *t* is replaced by the small period δt ,

the increase in *x* over the period δt is $x(1+p)^{\delta t} - x$

$$= x (1 + p\delta t + o(\delta t)) - x = xp\delta t + o(\delta t) \quad (\text{where } |p| < 1)$$

[where $o(\delta t)$ means "terms of order smaller than δt " (ie involving $(\delta t)^2$ and higher powers)]

Thus
$$\frac{dx}{dt} = \lim_{\delta t \to 0} \frac{xp\delta t + o(\delta t)}{\delta t} = px$$

This has also been found to be an appropriate model for population growth; ie $\frac{dP}{dt} = kP$, and Newton's law of cooling is $\frac{dT}{dt} = -kT$

(ii) The function $y = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ can easily be seen to have the property that $\frac{d}{dx}(e^x) = e^x$, on differentiating term by term. And, by the Chain rule, $\frac{d}{dx}(e^{kx}) = ke^{kx}$.

Thus a solution of $\frac{dP}{dt} = kP$, for example, is $P = P_0 e^{kt}$, with P_0 being P(0), the initial population.

(iii) The function $y = e^x$ is the special case of the family $y = a^x$ where the gradient at x = 0 is 1 (for the purpose of sketching

$$y = e^x$$
).

It is shown later on that $\frac{d}{dx}(a^x) = lna.a^x$

It is possible to express the solution of $\frac{dP}{dt} = kP$ as $P = P_0 a^{\lambda t}$, as follows:

Let $P = P_0 a^{\lambda t}$, so that $\frac{dP}{dt} = \lambda lna. P_0 a^{\lambda t}$

Then let $k = \lambda lna$, to give $P = P_0 a^{(\frac{kt}{lna})}$

Thus *e* is just the value of *a* that gives the simplest from of the solution.

(2) Derivative of *ln x*

y = lnx is the inverse function of $y = e^x$, and therefore its reflection in the line y = x

The gradient of one of these two curves is the reciprocal of the other at the reflected point. (Consider, for example, what is happening when x = 2 for y = lnx : y = 2 at the reflected point on $y = e^x$, and the tangents to the two curves have reciprocal gradients, because the roles of x and y are being reversed.)

Suppose that $e^a = b$, so that a = lnb. (Consider, for example, where b = 2 and a = 0.693 (3sf).)

Then
$$\frac{d}{dx}(lnx)|_{x=b} = \frac{1}{\frac{d}{dx}(e^{x}|_{x=a})} = \frac{1}{e^{a}} = \frac{1}{b}$$

Since this is true for all values of *x* in the domain of y = lnx, we can say that $\frac{d}{dx}(lnx) = \frac{1}{x}$

Alternative approach 1 (informal)

When $y = e^x$, $\frac{dy}{dx} = y$. In order to obtain the derivative of *lnx*, we reverse the roles of *x* & *y*, so that $\frac{dx}{dy} = x$, giving $\frac{dy}{dx} = \frac{1}{x}$

Alternative approach 2

$$y = e^x \Rightarrow x = lny$$

Then, differentiating both sides wrt *x*,

$$1 = \frac{d}{dy} lny \cdot \frac{dy}{dx} \implies \frac{d}{dy} lny = \frac{1}{\left(\frac{dy}{dx}\right)} = \frac{1}{e^x} = \frac{1}{y}$$

Relabelling we then have $\frac{d}{dx}lnx = \frac{1}{x}$

(3) Differentiating a^x (two methods)

(a) Let $y = a^x$

Then lny = xlna

fmng.uk

Differentiating implicitly gives $\frac{1}{y}\frac{dy}{dx} = lna$, so that $\frac{dy}{dx} = lna.a^x$ (*)

(b) Let $y = a^x$ and let $a = e^b$ (it is assumed that a > 0; the result (*) also implies this) Then $y = (e^b)^x = e^{bx}$ and $\frac{dy}{dx} = be^{bx} = lna. a^x$

Note: When a = e, lna = 1 (which may help to recall the result).