Differentiation - Exercises (2 pages; 18/2/20)

Key to difficulty:

- * easier
- ** moderate
- *** harder

(1*) Find the derivative of *tanx* using (a) the Quotient rule, and(b) the Product rule

(2***) Find the turning points of $y = (x^2 - 4x + 3)^2$

 (3^{**}) If $f(x) = x^2$, what is f'(3x)?

(4***) Find
$$\frac{d}{dx}(x^{sinx})$$

(5***) Find $\frac{d}{dx}(a^x)$

- (6**) For a particular point on a curve:
- S = stationary point
- T = turning point
- PI = point of inflexion
- 2D0 = 2nd derivative is zero

TG = turning point of gradient

Which of the following are true?

(a) $T \Rightarrow S$ (b) $S \Rightarrow T$ (c) $PI \Rightarrow S$ (d) $2D0 \Leftrightarrow PI$ (e) $PI \Leftrightarrow TG$ (f) $TG \Rightarrow 2D0$

(7**) Referring to the abbreviations in (6), represent the events S, T, PI, 2D0 & TG of (ii) in a Venn diagram, showing where the following functions lie:

 $A: y = x \quad B: y = x^2 \quad C: y = x^3 \quad D: y = x^4 \quad E: y = tanx \quad F: y = e^x$

(ie depending on whether these functions exhibit any of the events)

Are there any regions of the Venn diagram that aren't satisfied by any functions?

(8**) If f(x) = sinx, express $f^{(n)}(0)$ in terms of n, when n is odd (where $f^{(n)}(x)$ denotes the nth derivative of f(x))

(9***) Show that $\int \frac{1}{\sqrt{1+a^2x^2}} dx = \frac{1}{a} ln \left| \sqrt{1+a^2x^2} + ax \right| + c$, by differentiation