Differentiation Overview (23/5/21)

Q1 [Practice/Y2/E]

Find the derivative of tanx using (a) the Quotient rule, and (b) the Product rule

Q2 [Practice/Y2/M]
(i) Find $\frac{d}{d x}\left(x^{x}\right)$
(ii) Show that $\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}$
(iii) Find $\frac{d}{d x}\left(x^{\sin x}\right)$
(iv) Find $\frac{d}{d x}\left(a^{x}\right)$

Q3 [9 marks]
Find the turning points of $y=\left(x^{2}-4 x+3\right)^{2}$, and hence sketch the curve.

Q4 [Practice/Y2/E]
Show that $\int \frac{1}{\sqrt{1+a^{2} x^{2}}} d x=\frac{1}{a} \ln \left|\sqrt{1+a^{2} x^{2}}+a x\right|+c$, by differentiation

Q5 [8 marks]
A dog is being taken for a walk on a path round the edge of a ploughed field. The owner starts at A (see diagram), and walks it a distance L along one side of the field, and then (after turning a right angle) a distance $k L$ along the next side. At B, the dog is let off the lead, but decides to run back to A, along the route indicated by arrows on the diagram (ie a stretch of ploughed field, followed by a stretch of path). If the dog's speed is reduced by $\lambda \%$ when running on the ploughed field, compared with the path, find an expression for the angle θ that minimises the time taken for it to return to A.

Q6 [Problem/Y2/M]
If $f(x)=x^{2}$, what is $f^{\prime}(3 x) ?$

