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Determinants & Inverses (14 pages; 3/6/19) 
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(A) Determinants  

(1) Miscellaneous 

(i) |𝐴𝐵| = |𝐴||𝐵| (see (ix) for proof) 

(ii) |𝑀||𝑀−1| = |𝑀𝑀−1| = |𝐼| = 1, so that  |𝑀−1| =
1

|𝑀|
 

(iii) |𝑀𝑇| = |𝑀| 

(iv) Adding a multiple of one column/row to another column/row 

leaves the determinant unchanged. 

For a 3 × 3 matrix 𝑀, with columns  𝑎 , 𝑏 & 𝑐,    |𝑀| = 𝑎. (𝑏 × 𝑐)  

and  |𝑎 + 𝑘 𝑏 , 𝑏 , 𝑐| = (𝑎 + 𝑘𝑏). (𝑏 × 𝑐)  

= 𝑎. (𝑏 × 𝑐) + (𝑘𝑏). (𝑏 × 𝑐) = 𝑎. (𝑏 × 𝑐) , 

as  𝑏 × 𝑐 is perpendicular to 𝑏 

(v) Swapping 2 columns/rows changes the sign 

(vi) If 2 rows/columns are identical, then the determinant is zero 

[follows from (v)] 
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(vii) |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = |

𝑏1 𝑐1 𝑎1

𝑏2 𝑐2 𝑎2

𝑏3 𝑐3 𝑎3

| = |

𝑐1 𝑎1 𝑏1

𝑐2 𝑎2 𝑏2

𝑐3 𝑎3 𝑏3

| 

ie the determinant is unchanged if the columns (or rows) are 

interchanged cyclicly [follows from (v)] 

(viii) |𝑘𝑎 , 𝑏 , 𝑐| = 𝑘|𝑎 , 𝑏 , 𝑐| 

as  (𝑘𝑎). (𝑏 × 𝑐) = 𝑘[𝑎. (𝑏 × 𝑐)] 

 

(ix) The determinant of a 3 × 3  matrix is the volume scale factor 

of the associated transformation. This provides a proof for 

|𝐴𝐵| = |𝐴||𝐵| , when successive transformations are applied. 

 

(2) Manipulating determinants 

[The entries of the determinant may be numbers or letters.] 

(i) Gaussian elimination 

[This is a standard procedure, which always works, but usually 

involves awkward fractions. It is also used (using matrices, rather 

than determinants) to solve simultaneous equations. Generally 

though, it is simpler to work out the determinant by the usual 

expansion.] 

The aim is to obtain a triangular form, such as |
2 4 7
0 2 5
0 0 5

| 

[When solving simultaneous equations which have been reduced 

to a triangular form, such as 
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(
2 4 7
0 2 5
0 0 5

) (
𝑥
𝑦
𝑧

) = (
6
7
8

) , 𝑧 is obtained from the 3rd row; 

 then 𝑦 from the 2nd, and 𝑥 from the 1st.] 

 

Example: |
2 4 7
3 5 8
4 7 9

| 

Step 1: 𝑅2 → 𝑅2 −
3

2
𝑅1, to give |

2 4 7

0 −1 −
5

2

4 7 9

| 

or −
1

2
 |

2 4 7
0 2 5
4 7 9

| 

Step 2: 𝑅3 → 𝑅3 −
4

2
𝑅1, to give −

1

2
|
2 4 7
0 2 5
0 −1 −5

| 

Step 3: 𝑅3 → 𝑅3 −
(−1)

2
𝑅2, to give −

1

2
|

2 4 7
0 2 5

0 0 −
5

2

| 

or  
1

4
|
2 4 7
0 2 5
0 0 5

| =
1

4
(2)(2)(5) = 5 

 

(ii) Alternative strategy 

In many cases it is possible to take advantage of some of the 

following devices. These are illustrated in the examples below. 

(a) Take out any common factors of a row or column. 

(b) If an entry is repeated in a row or column, subtract the 

appropriate column or row, to produce a zero entry. 
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(c) Once a row such as (1, 0, 0) has been obtained, multiples of 

this can be subtracted from other rows to produce more zeros. 

 

(iii) Examples 

Example 1 

Factorise ∆= |
1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

| 

 

Solution 

Replacing R1 with R1 - R2 (where R1 means row 1), 

∆= |
0 𝑥 − 𝑦 𝑥2 − 𝑦2

1 𝑦 𝑦2

1 𝑧 𝑧2

|  

This has the advantage of creating a 0 in R1 and obtaining a 

common factor for the other elements of the row. 

Thus  ∆= (𝑥 − 𝑦) |

0 1 𝑥 + 𝑦

1 𝑦 𝑦2

1 𝑧 𝑧2

| 

Similarly, we can replace R2 with R2 - R3, to give 

(𝑥 − 𝑦) |

0 1 𝑥 + 𝑦

0 𝑦 − 𝑧 𝑦2 − 𝑧2

1 𝑧 𝑧2

|  

so that  ∆= (𝑥 − 𝑦)(𝑦 − 𝑧) |
0 1 𝑥 + 𝑦
0 1 𝑦 + 𝑧

1 𝑧 𝑧2

| 

= (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑦 + 𝑧 − 𝑥 − 𝑦) = (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)  
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Example 2 

Show that |
−2 1 2𝑘
−1 1 𝑘 + 1
2 𝑘 − 1 1

|  is independent of 𝑘 

Solution 

(The strategy used here is to create zeros wherever possible.) 

𝑅1 → 𝑅1 − 𝑅2 ⇒ |
−1 0 𝑘 − 1
−1 1 𝑘 + 1
2 𝑘 − 1 1

|  

𝑅2 → 𝑅2 − 𝑅1 ⇒ |
−1 0 𝑘 − 1
0 1 2
2 𝑘 − 1 1

|  

𝑅3 → 𝑅3 + 2 × 𝑅1 ⇒ |
−1 0 𝑘 − 1
0 1 2
0 𝑘 − 1 2𝑘 − 1

|  

= −1(2𝑘 − 1 − 2𝑘 + 2) = −1  

 

Example 3 

Evaluate |
1 2 3
4 5 6
7 8 9

| by row and column operations 

Solution 

Method 1 

𝑅2 → 𝑅2 − 4 × 𝑅1 ⇒ |
1 2 3
0 −3 −6
7 8 9

|  

[Note: Had the 1 not been present, we could have created it by 

taking out the appropriate factor from the 1st row or column.] 
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𝑅3 → 𝑅3 − 7 × 𝑅1 ⇒ |
1 2 3
0 −3 −6
0 −6 −12

|  

𝑅3 → 𝑅3 − 2 × 𝑅2 ⇒ |
1 2 3
0 −3 −6
0 0 0

|  

= 0  

Method 2 

𝐶2 → 𝐶2 − 𝐶1 ⇒ |
1 1 3
4 1 6
7 1 9

|  

𝐶3 → 𝐶3 − 𝐶1 ⇒ |
1 1 2
4 1 2
7 1 2

| = 0 , as two columns are equal  

 

(iv) Use of the Factor theorem 

To factorise ∆= |
1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

|: 

 

∆ can be considered as a polynomial in 𝑥 (for example); 𝑓(𝑥)  say. 

As  𝑓(𝑦) = |
1 𝑦 𝑦2

1 𝑦 𝑦2

1 𝑧 𝑧2

| = 0 (as rows 1 & 2 are equal), it follows  

that (𝑥 − 𝑦) is a factor of  ∆. 

Similarly  (𝑥 − 𝑧) is a factor, and also (𝑦 − 𝑧) (by symmetry: 

considering ∆ as a polynomial in 𝑦 or 𝑧). 
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We can write  ∆= 𝑎(𝑥 − 𝑦)(𝑥 − 𝑧)(𝑦 − 𝑧). There won't be any 

other factors involving 𝑥, 𝑦 𝑜𝑟 𝑧, since if we expand |
1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

| by 

the 1st column, all the terms are seen to be cubic in 𝑥, 𝑦 & 𝑧. 

Then, as one of the terms of the expansion is 𝑥2(−𝑦) [expanding 

by the 1st row, for example], 𝑎 must be −1, 

and  ∆= −(𝑥 − 𝑦)(𝑥 − 𝑧)(𝑦 − 𝑧),  or   ∆= (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥) 

 

(v) Alternative method (when the elements are numbers) 

The matrix is extended, by adding on repeats of the 2nd and 3rd 

rows, as shown below. For each upward or downward diagonal  

 

with 3 elements, the elements are multiplied together, and the 

sign of the resulting product is reversed in the case of the 

downward diagonals. 

Example: To find |
1 2 3
4 5 6
7 8 9

| 

1 2 3
4 5 6
7 8 9

  

1 2 3
4 5 6

  

Δ = (7)(5)(3) + (1)(8)(6) + (4)(2)(9)  

−(1)(5)(9) − (4)(8)(3) − (7)(2)(6)  

= 105 + 48 + 72 − 45 − 96 − 84 = 0  
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(3) Cramer's rule 

This provides a compact way of solving simultaneous equations. 

For two equations, expressed in matrix form as 

(
𝑎 𝑐
𝑏 𝑑

) (
𝑥
𝑦) = (

𝑒
𝑓) , the solution is: 

𝑥 =
|
𝑒 𝑐
𝑓 𝑑|

|
𝑎 𝑐
𝑏 𝑑

|
  &  𝑦 =

|
𝑎 𝑒
𝑏 𝑓|

|
𝑎 𝑐
𝑏 𝑑

|
 

and the same method applies to larger numbers of equations.  

General Proof  

Let the system of equations be: 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1  

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2  

... 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛  

 

Let A be the matrix [𝑎𝑖𝑗] and let 𝑐𝑖𝑗 be the cofactor of 𝑎𝑖𝑗  in A. 

 

Then, multiplying the 1st equation by 𝑐11, the 2nd equation by 𝑐21, 

..., the last equation by 𝑐𝑛1 , and adding: 

 

𝑥1 ∑ 𝑎𝑖1𝑐𝑖1
𝑛
𝑖=1 + 𝑥2 ∑ 𝑎𝑖2𝑐𝑖1

𝑛
𝑖=1 + ⋯ + 𝑥𝑛 ∑ 𝑎𝑖𝑛𝑐𝑖1

𝑛
𝑖=1 = ∑ 𝑏𝑖𝑐𝑖1

𝑛
𝑖=1   

 

But ∑ 𝑎𝑖1𝑐𝑖1
𝑛
𝑖=1 = |𝐴| (expanding by the 1st column), 
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and  ∑ 𝑎𝑖2𝑐𝑖1
𝑛
𝑖=1 = 0 (property of alien cofactors: applying the 

cofactors of the 1st column to the elements of the 2nd column) 

etc., whilst ∑ 𝑏𝑖𝑐𝑖1
𝑛
𝑖=1  is the determinant of the matrix formed by 

replacing the 1st column of A by the column of 𝑏𝑖𝑠 (and expanding 

by the 1st column). 

 

Thus  𝑥1|𝐴| = |

𝑏1 𝑎12 … 𝑎1𝑛

𝑏2 𝑎22 … 𝑎2𝑛…
𝑏 𝑛

…
𝑎 𝑛2

…
…
𝑎 𝑛𝑛

| 

and hence  𝑥1 =
1

|𝐴|
|

𝑏1 𝑎12 … 𝑎1𝑛

𝑏2 𝑎22 … 𝑎2𝑛…
𝑏 𝑛

…
𝑎 𝑛2

…
…
𝑎 𝑛𝑛

|  

 

(and similarly for 𝑥2, … , 𝑥𝑛) 

 

(B) Transposes   

[denoted by 𝐴𝑇  𝑜𝑟 𝐴′] 

(i) (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇     

Note that 𝐴 & 𝐵 don't need to be square matrices (provided that 

𝐴𝐵 is defined). 

 

(ii) 𝐴𝐴𝑇   is symmetric 

as  (𝐴𝐴𝑇)𝑇 = (𝐴𝑇)𝑇𝐴𝑇 = 𝐴𝐴𝑇   

 

(iii) (𝐴𝑇)−1 = (𝐴−1)𝑇  (see Matrices - Exs (General), Q5) 
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(iv) |𝐴𝑇| = |𝐴| 

 

(v) 𝐴 is described as orthogonal if 𝐴−1 = 𝐴𝑇  

 

(vi) Scalar products 

If 𝑥1 & 𝑥2 are two column vectors, their scalar product is given by 

𝑥1
𝑇𝑥2 (or 𝑥2

𝑇𝑥1 ; the effect of taking the transpose of 𝑥1
𝑇𝑥2, which 

(as it is a scalar) leaves it unchanged); ie a row vector multiplied 

(on its right) by a column vector. [This gives a 

(1 × 𝑛) × (𝑛 × 1) = 1 × 1 matrix; ie a scalar. The reverse order 

would be incorrect, giving a 

 (𝑛 × 1) ×  (1 × 𝑛) =  𝑛 × 𝑛  matrix.] 

 

(C) 𝟑 × 𝟑 Inverses  

Let |A| = |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = |
1 3 2
5 1 4
6 2 3

| , for example 

= 1(1 × 3 − 2 × 4) − 5(3 × 3 − 2 × 2) + 6(3 × 4 − 1 × 2)       (1) 

(expanding by the 1st column). 

 

Let   𝐴1 = (1 × 3 − 2 × 4),   𝐴2 = −(3 × 3 − 2 × 2) , 

𝐴3 = (3 × 4 − 1 × 2)  



 fmng.uk 

11 
 

or  𝐴1 = + |
𝑏2 𝑐2

𝑏3 𝑐3
|  ,  𝐴2 = − |

𝑏1 𝑐1

𝑏3 𝑐3
| ,  𝐴3 = + |

𝑏1 𝑐1

𝑏2 𝑐2
|   in 

general. 

These are referred to as the cofactors of  𝑎1, 𝑎2, 𝑎3,  respectively. 

Other cofactors are defined similarly, with the + and − signs 

alternating as we go round the matrix. Thus: 

𝐵1 = − |
𝑎2 𝑐2

𝑎3 𝑐3
| , 𝐵2 = + |

𝑎1 𝑐1

𝑎3 𝑐3
| , 𝐵3 = − |

𝑎1 𝑐1

𝑎2 𝑐2
| 

𝐶1 = + |
𝑎2 𝑏2

𝑎3 𝑏3
| , 𝐶2 = − |

𝑎1 𝑏1

𝑎3 𝑏3
| , 𝐶3 = + |

𝑎1 𝑏1

𝑎2 𝑏2
|  

 

The cofactors are thus signed 2 × 2  determinants. The unsigned 

 2 × 2 determinants are referred to as the minors of  𝑎1, 𝑎2, 𝑎3  

respectively. 

  

So, referring back to (1),   𝑎1𝐴1 + 𝑎2𝐴2 + 𝑎3𝐴3 = |𝐴|       

Similarly it can be shown that  

𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3 = |𝐴|     and   𝑐1𝐶1 + 𝑐2𝐶2 + 𝑐3𝐶3 = |𝐴|      

 

Also  𝑏1𝐴1 + 𝑏2𝐴2 + 𝑏3𝐴3 =  

3(1 × 3 − 2 × 4) − 1(3 × 3 − 2 × 2) + 2(3 × 4 − 1 × 2)  

= |
3 3 2
1 1 4
2 2 3

| (expanding by the 1st column) = 0 

(as two of the columns of the determinant are identical). 
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[Note that the 1st column of 𝑎𝑖𝑠 in the original matrix has been 

replaced with the column of 𝑏𝑖𝑠. ] 

Thus   𝑏1𝐴1 + 𝑏2𝐴2 + 𝑏3𝐴3 = 0  (property of 'alien cofactors'), 

and similarly for other combinations of letters, so that 

eg  𝑐1𝐵1 + 𝑐2𝐵2 + 𝑐3𝐵3 = 0   

 

Now consider the matrix of cofactors: (

𝐴1 𝐵1 𝐶1

𝐴2 𝐵2 𝐶2

𝐴3 𝐵3 𝐶3

) 

and form the transpose: (

𝐴1 𝐴2 𝐴3

𝐵1 𝐵2 𝐵3

𝐶1 𝐶2 𝐶3

) 

This transpose is called the adjugate or adjoint of the original 

matrix. 

 

Then, from the above, it follows that  

 (

𝐴1 𝐴2 𝐴3

𝐵1 𝐵2 𝐵3

𝐶1 𝐶2 𝐶3

) (

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

) = (

|𝐴| 0 0
0 |𝐴| 0
0 0 |𝐴|

) 

 

= |A| (
1 0 0
0 1 0
0 0 1

)  

 

Hence  𝐴−1 =
1

|𝐴|
 (

𝐴1 𝐴2 𝐴3

𝐵1 𝐵2 𝐵3

𝐶1 𝐶2 𝐶3

) 
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Summary of Procedure 

(1) Find cofactors of each cell (signed 2 × 2 determinants). 

(2) Create the transpose of the matrix of cofactors.  

(3) Divide by |A|. 

 

 

𝐄𝐱𝐞𝐫𝐜𝐢𝐬𝐞 𝟏:   Find  (
1 3 2
5 1 4
6 2 3

)

−1

   

 

Solution 

Step 1: Matrix of cofactors = (
−5 9 4
−5 −9 16
10 6 −14

) 

Step 2: Transpose of matrix of cofactors = (
−5 −5 10
9 −9 6
4 16 −14

) 

Step 3:  (
1 3 2
5 1 4
6 2 3

)

−1

= 
1

30
 (

−5 −5 10
9 −9 6
4 16 −14

) 

 

[As a check,  
1

30
 (

−5 −5 10
9 −9 6
4 16 −14

) (
1 3 2
5 1 4
6 2 3

)  should equal 

(
1 0 0
0 1 0
0 0 1

)] 

 

Exercise 2 
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Show that  (

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

) (

𝐴1 𝐴2 𝐴3

𝐵1 𝐵2 𝐵3

𝐶1 𝐶2 𝐶3

) = (

|𝐴| 0 0
0 |𝐴| 0
0 0 |𝐴|

)  

 

 

 

 

Solution 

𝑎1𝐴1 + 𝑏1𝐵1 + 𝑐1𝐶1 = |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| (expanding by 1st row)  = |𝐴| 

𝑎1𝐴2 + 𝑏1𝐵2 + 𝑐1𝐶2 = − |

𝑎1 𝑏1 𝑐1

𝑎1 𝑏1 𝑐1

𝑎3 𝑏3 𝑐3

| (expanding by 1st row)  =

0, 

as two of the rows are identical; and similarly for other cells. 

 

 

 

 

 

 


