Differential Equations – Q1 [Practice/E](26/5/21)

Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos 2x$$

Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos 2x$$

Solution

The auxiliary equation is $\lambda^2 - 6\lambda + 9 = 0$ or $(\lambda - 3)^2 = 0$, which has a repeated root of $\lambda = 3$.

The complementary function is $y = (A + Bx)e^{3x}$

The particular integral will be of the form y = asin2x + bcos2x.

Substituting into (*) gives

(-4asin2x - 4bcos2x) - 6(2acos2x - 2bsin2x)

+9(asin2x + bcos2x) = cos2x

Equating coefficients of *sin*2*x* and *cos*2*x*:

-4a + 12b + 9a = 0 and -4b - 12a + 9b = 1

leading to $a = -\frac{12}{169}$ and $b = \frac{5}{169}$

The general solution is therefore

 $y = (A + Bx)e^{3x} - \frac{12sin2x}{169} + \frac{5cos2x}{169}$