Differential Equations - Q1 [Practice/E](26/5/21)

Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\cos 2 x
$$

Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\cos 2 x
$$

Solution

The auxiliary equation is $\lambda^{2}-6 \lambda+9=0$ or $(\lambda-3)^{2}=0$, which has a repeated root of $\lambda=3$.

The complementary function is $y=(A+B x) e^{3 x}$
The particular integral will be of the form $y=a \sin 2 x+b \cos 2 x$.
Substituting into (*) gives
$(-4 a \sin 2 x-4 b \cos 2 x)-6(2 a \cos 2 x-2 b \sin 2 x)$
$+9(a \sin 2 x+b \cos 2 x)=\cos 2 x$
Equating coefficients of $\sin 2 x$ and $\cos 2 x$:
$-4 a+12 b+9 a=0$ and $-4 b-12 a+9 b=1$
leading to $a=-\frac{12}{169}$ and $b=\frac{5}{169}$
The general solution is therefore
$y=(A+B x) e^{3 x}-\frac{12 \sin 2 x}{169}+\frac{5 \cos 2 x}{169}$

