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Differential Equations: Approximate methods 

(10 pages; 21/1/20) 
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(1) Tangent Fields 

Whether or not an analytical (ie non-approximate) solution exists 

for a differential equation of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), it will be 

possible to plot the direction indicators for the curve. 

 

Example 1:  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 

Figure 1 below shows the direction indicators at various points, 

whilst Figure 2 shows the family of solutions of the equation. 

(This can be shown to be  𝑦 = 𝐴𝑒𝑥 − 𝑥 − 1.) 

An isocline is a locus of points for which the direction indicators 

are the same. Here, for example, the line 𝑦 = −𝑥 is an isoscline 

where the gradient of the direction indicator is 0. 
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Figure 1 

 

 

 

 

Figure 2 

 

(2) Euler's Method (for 1st order equations) 

Referring to the diagram below, 𝐴𝐵′ is the tangent to the curve at 

𝐴, and 𝑥1 = 𝑥0 + ℎ. 
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𝑑𝑦

𝑑𝑥
| 𝑥=𝑥0

=
𝐵′𝐷

𝐴𝐷
≈

𝐵𝐷

𝐴𝐷
=

𝑦1−𝑦0

𝑥1−𝑥0
=

𝑦1−𝑦0

ℎ
   or  𝑦1 ≈ 𝑦0 + ℎ

𝑑𝑦

𝑑𝑥
| 0 

 

Also, 𝐵𝐶′ is the tangent to the curve at 𝐵, and 𝑥2 = 𝑥1 + ℎ. 

And   
𝑑𝑦

𝑑𝑥
| 𝑥=𝑥1

=
𝐶′𝐹

𝐵𝐹
≈

𝐶𝐹

𝐵𝐹
=

𝑦2−𝑦1

𝑥2−𝑥1
=

𝑦2−𝑦1

ℎ
  or  𝑦2 ≈ 𝑦1 + ℎ

𝑑𝑦

𝑑𝑥
| 1 

and so on. 

(Note however, that the value of 𝑦1 used in the estimate of 𝑦2 will 

itself be an estimate, and that the value of 
𝑑𝑦

𝑑𝑥
| 1 will be obtained 

from the differential equation, and will be based on the estimated 

value of 𝑦1. The positions of 𝐵′ and 𝐶 will therefore be distorted.) 

Given a differential equation of the form  
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), and a value 

for 𝑦0, the iterative formula 
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𝒚𝒓 ≈ 𝒚𝒓−𝟏 + 𝒉
𝒅𝒚

𝒅𝒙
| 𝒓−𝟏  

  

can be applied to obtain approximate values of 𝑦𝑟  for 𝑟 ≥ 1. 

 

Note: The method will be more accurate when the gradient is not 

changing that rapidly; ie where the magnitude of  
𝑑2𝑦

𝑑𝑥2 is small. In 

other words, the accuracy depends on the degree of concavity 

(where 
𝑑2𝑦

𝑑𝑥2 < 0) or convexity (where 
𝑑2𝑦

𝑑𝑥2 > 0). 

 

Example 2:  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, where 𝑦 = 0 when 𝑥 = 0 

With  𝑥0 = 0 ,  𝑦0 = 0  and ℎ = 0.1, 

𝑥1 = 0.1,   𝑦1 = 0 + 0.1(0 + 0) = 0  

𝑥2 = 0.2, 𝑦2 = 0 + 0.1(0.1 + 0) = 0.01  

𝑥3 = 0.3, 𝑦3 = 0.01 + 0.1(0.2 + 0.01) = 0.031  

 

Notes 

(i) Considering the triangle 𝐴𝐷𝐵′ in the diagram,  
𝑑𝑦

𝑑𝑥
| 0 can be 

thought of as the scaling factor that has to be applied to 𝐴𝐷, in 

order to obtain 𝐵′𝐷. 

(ii) Given that the true value of 𝑦0 is known, 
𝑑𝑦

𝑑𝑥
| 0 obtained from 

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦  will be the true gradient of the curve at (𝑥0, 𝑦0); but 

𝑑𝑦

𝑑𝑥
| 1 will only be an approximation to the gradient at (𝑥1, 𝑦1), as it 

is based on the approximate value 𝑦1. 
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(3) Improved estimate for Euler's method 

If 𝛼 is a particular value of 𝑥 , then, for small values of ℎ, it can be 

shown that the estimate of 𝑦 at 𝑥 = 𝛼, 𝑦(𝛼) is approximately a 

linear function of ℎ; i.e. 𝑦(𝛼) ≈ 𝑚ℎ + 𝑐 (*) 

 

By carrying out Euler's method for two values of ℎ, and obtaining 

a value for 𝑦(𝛼) in each case, two simultaneous equations of the 

form (*) are created, and these can be solved to obtain a value for 

𝑐. This value is then equivalent to putting ℎ = 0, and is thus an 

improved value for 𝑦(𝛼). 

For Example 2, with  ℎ = 0.05, 

𝑥1 = 0.05,   𝑦1 = 0 + 0.05(0 + 0) = 0  

𝑥2 = 0.1, 𝑦2 = 0 + 0.05(0.05 + 0) = 0.0025  

𝑥3 = 0.15, 𝑦3 = 0.0025 + 0.05(0.1 + 0.0025) = 0.007625  

𝑥4 = 0.2, 𝑦4 = 0.007625 + 0.05(0.15 + 0.007625) = 0.01550625  

 

Thus, with 𝛼 = 0.2 and ℎ = 0.05, an estimate for 𝑦(0.2) is 

0.01550625 or 0.0155 (3sf) 

We can then write 0.01550625 = 𝑚(0.05) + 𝑐   (1) 

 

Earlier we obtained the estimate of 0.01 for 𝑦(0.2), with ℎ = 0.1, 

and this gives   0.01 = 𝑚(0.1) + 𝑐   (2) 

 

Then 2 × (1) − (2) gives 𝑐 = 0.0310125 − 0.01 = 0.0210125, and 

hence an improved estimate for 𝑦(0.2) is  0.0210 (3sf) 

The true value is 𝑒0.2 − 0.2 − 1 = 0.0214 (3sf). 
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To summarise: 

 estimate of 𝑦(0.2) 
ℎ = 0.1  0.01 
ℎ = 0.05  0.0155 
ℎ ≈ 0  0.0210 
 0.0214 (true value) 
 

 

(4) Midpoint method (for 1st order equations) 

An improvement can usually be made to Euler's method by 

considering approximations to the 𝑦-coordinate either side of  

𝑦0 (see diagram below, where 𝐴′𝐵𝐶′ is the tangent to the curve at 

𝐵). 

 

Then  
𝑑𝑦

𝑑𝑥
| 0 =

𝐶′𝐷

𝐴′𝐷
≈

𝑦1−𝑦−1

𝑥1−𝑥−1
=

𝑦1−𝑦−1

2ℎ
   or  𝑦1 ≈ 𝑦−1 + 2ℎ

𝑑𝑦

𝑑𝑥
| 0 

This produces the iterative formula: 

𝒚𝒓 ≈ 𝒚𝒓−𝟐 + 𝟐𝒉
𝒅𝒚

𝒅𝒙
| 𝒓−𝟏 
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The midpoint method requires two initial values of 𝑦 in order to 

carry out the iterations (𝑦1will be needed in order to obtain an 

approximate value for 
𝑑𝑦

𝑑𝑥
| 1, so that the above formula can be 

used to find 𝑦2). If only one value is provided, then Euler's method 

may be used to find an approximate value for the second. 

 

Example 2 (again):  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, where 𝑦 = 0 when 𝑥 = 0 

with ℎ = 0.1 again. 

Solution 

𝑥0 = 0 ,  𝑦0 = 0  again. 

𝑥1 = 0 + 0.1 = 0.1  

Euler's method is applied to find 𝑦1, to give 𝑦1 = 0, as before. 

Then  
𝑑𝑦

𝑑𝑥
| 1 ≈ 𝑥1 + 𝑦1 = 0.1 + 0 = 0.1 

𝑥2 = 0.1 + 0.1 = 0.2  

By the midpoint formula, 𝑦2 ≈ 𝑦0 + 2ℎ
𝑑𝑦

𝑑𝑥
| 1, 

so that 𝑦2 ≈ 0 + 2(0.1)(0.1) = 0.02 

𝑥3 = 0.2 + 0.1 = 0.3  

Then  
𝑑𝑦

𝑑𝑥
| 2 ≈ 𝑥2 + 𝑦2 = 0.2 + 0.02 = 0.22 

𝑦3 ≈ 𝑦1 + 2ℎ
𝑑𝑦

𝑑𝑥
| 2, 

so that 𝑦3 ≈ 0 + 2(0.1)(0.22) = 0.044 

[This compares with 0.031 by Euler's method.] 
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(5) 2nd Order method 

Iterative formula: 

𝒚𝒓 = −𝒚𝒓−𝟐 + 𝟐𝒚𝒓−𝟏 + 𝒉𝟐 𝒅𝟐𝒚

𝒅𝒙𝟐 | 𝒓−𝟏  

  

Derivation: As 
𝑑2𝑦

𝑑𝑥2 is the gradient of 
𝑑𝑦

𝑑𝑥
, 

𝑑2𝑦

𝑑𝑥2 | 0 ≈
𝑑𝑦

𝑑𝑥
| 0−

𝑑𝑦

𝑑𝑥
| −1

ℎ
 

[Notice that we are looking backwards this time, whereas Euler's 

method looks forward with 
𝑑𝑦

𝑑𝑥
| 0 =

𝑦1−𝑦0

ℎ
 ] 

=
(

𝑦1−𝑦0
ℎ

)−(
𝑦0−𝑦−1

ℎ
)

ℎ
=

(𝑦1−𝑦0)−(𝑦0−𝑦−1)

ℎ2 =
𝑦1−2𝑦0+𝑦−1

ℎ2   

⇒ ℎ2 𝑑2𝑦

𝑑𝑥2 | 0 ≈ 𝑦1 − 2𝑦0 + 𝑦−1  

⇒ 𝑦1 ≈ −𝑦−1 + 2𝑦0 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 0 , 

which gives the required iterative formula. 

 

Example 3: 
𝑑2𝑦

𝑑𝑥2 = 𝑥(𝑥 + 𝑦), given that when 𝑥 = 1, 𝑦 = 2 and 

 
𝑑𝑦

𝑑𝑥
= 1; with ℎ = 0.1 

Solution 

Method 1 (using Euler's formula) 

𝑥0 = 1 ,  𝑦0 = 2   

𝑥1 = 𝑥0 + ℎ = 1 + 0.1 = 1.1  

 

Use Euler's method obtain an approximate value for 𝑦1: 
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𝑦1 ≈ 𝑦0 + ℎ
𝑑𝑦

𝑑𝑥
| 0 = 2 + (0.1)(1) = 2.2  

𝑥2 = 𝑥1 + ℎ = 1.1 + 0.1 = 1.2  

Then the formula  𝑦𝑟 ≈ −𝑦𝑟−2 + 2𝑦𝑟−1 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 𝑟−1 , together 

with 
𝑑2𝑦

𝑑𝑥2 = 𝑥(𝑥 + 𝑦) gives: 

𝑦2 ≈ −𝑦0 + 2𝑦1 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 1  

= −𝑦0 + 2𝑦1 + ℎ2𝑥1(𝑥1 + 𝑦1)  

= −2 + 2(2.2) + (0.01)(1.1)(1.1 + 2.2)  

= 2.4363  

and values for 𝑦3 etc are obtained in the same way. 

 

Method 2 (a more accurate - but longer - approach, using the 

midpoint formula) 

𝑥0 = 1 ,  𝑦0 = 2   

𝑥1 = 𝑥0 + ℎ = 1 + 0.1 = 1.1  

The 2nd order formula  𝑦𝑟 ≈ −𝑦𝑟−2 + 2𝑦𝑟−1 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 𝑟−1 gives 

𝑦1 ≈ −𝑦−1 + 2𝑦0 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 0 = −𝑦−1 + 2𝑦0 + ℎ2𝑥0(𝑥0 + 𝑦0)  

so that  𝑦1 ≈ −𝑦−1 + 2(2) + (0.01)(1)(1 + 2) = −𝑦−1 + 4.03   (1) 

whilst the midpoint formula  𝑦𝑟 ≈ 𝑦𝑟−2 + 2ℎ
𝑑𝑦

𝑑𝑥
| 𝑟−1 gives 

𝑦1 ≈ 𝑦−1 + 2ℎ
𝑑𝑦

𝑑𝑥
| 0  

so that  𝑦1 ≈ 𝑦−1 + 2(0.1)(1) = 𝑦−1 + 0.2  (2) 

Adding (1) & (2):   2𝑦1 = 4.23   and  𝑦1 = 2.115 
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[compared with 2.2 by Method 1] 

Then  𝑦2 ≈ −𝑦0 + 2𝑦1 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 1 

= −𝑦0 + 2𝑦1 + ℎ2𝑥1(𝑥1 + 𝑦1)  

= −2 + 2(2.115) + (0.01)(1.1)(1.1 + 2.115)    

= 2.265365  [compared with 2.4363 by Method 1] 

 

(6) General Points 

(i) Approximate values of 𝑦𝑛 shouldn't be given to too many 

decimal places (though a reasonably large number of dps should 

be kept in the intermediate calculations). 

If accurate values of 𝑦𝑛 are required, then the process can be 

repeated for smaller ℎ, until no further change occurs, to the 

required number of decimal places. 

(ii) Euler's method can be used (eg to find another value of 

𝑦𝑛) whenever either (a) a formula is provided for 
𝑑𝑦

𝑑𝑥
 , or (b) when 

a value is given for 
𝑑𝑦

𝑑𝑥
 for a particular value of 𝑥. 


