Counting Q7 [Problem/H] (9/6/21)

Given 6 pairs of twins, in how many ways can they be placed in 3 teams of 4 , such that no team contains any pair of twins?

Given 6 pairs of twins, in how many ways can they be placed in 3 teams of 4 , such that no team contains any pair of twins?

Solution

Let the 6 pairs of twins be labelled $A a B b \ldots F f$
Define team 1 to be the team containing A.
Team 1 might, for example, be $A b C d$.
The number of ways of choosing the 3 people to go with A is
$\binom{5}{3}$ [the number of ways of choosing 3 of the 5 remaining pairs] $\times 2^{3}$ [as either twin could be chosen for each pair]

For the case where team 1 is $A b C d$, define team 2 to be the team containing E. [Had E been chosen for team 1 , it would have been another letter that was chosen to define team 2]

One complete selection of teams would then be:
team 1: $A b C d$
team 2: $a c E f$
team 3: B DeF
There is the following scope for choice:
$\binom{4}{2}$ ways of choosing the 2 people out of $a B c D$ to go in team 2; combined with the 2 ways of choosing either f or F for team 2

Thus the overall total number of ways is:
$\binom{5}{3} \times 2^{3} \times\binom{ 4}{2} \times 2=10 \times 8 \times 6 \times 2=960$
Note: For team 1, an alternative calculation is as follows:

The number of ways of filling the remaining 3 places in team 1 is $10 \times 8 \times 6$, if order is important; but, as order isn't important, we divide by 3 !, to give 10×8, as before.

