Counting Q1 - Problem/M (23/5/21)
(i) 3 different sweets are to be shared amongst 5 children. In how many ways can this be done, if no child is to receive all 3 sweets?
(ii) What is the answer if the 3 sweets are indistinguishable?
(i) 3 different sweets are to be shared amongst 5 children. In how many ways can this be done, if no child is to receive all 3 sweets?
(ii) What is the answer if the 3 sweets are indistinguishable?

Solution

(i) Method 1

There are 5^{3} ways of allocating the children to the 3 sweets. Then deduct the 5 ways in which one child has all 3 sweets, to give $5^{3}-5=120$

Method 2

The permissible cases are: $\mathrm{ABC}, \mathrm{AAB}, \mathrm{ABA}, \mathrm{BAA}$ (where AAB means that sweets $1 \& 2$ go to child $A \&$ sweet 3 goes to child B).

The total number of possibilities is then:
$5(4)(3)+5(4)+5(4)+5(4)$ [for AAB eg, there are 5 ways of choosing A, and then 4 ways of choosing B]
$=60+20+20+20=120$
(ii) If the 3 sweets are indistinguishable, there are 2 permissible cases:
$A A B$ and $A B C$ (where $A A B$, for example, means that child A receives 2 sweets \& child B receives 1 sweet)

The total number of such cases is 5×4 (5 ways of choosing A, and then 4 ways of choosing B) $+\binom{5}{3}=20+10=30$.

