Convex \& Concave Functions (2 pages; 2/6/23)
(1) Examples of a concave function are $y=x^{2}$ and $y=e^{x}$ (think of conve e^{x} !).

For a convex function, the line connecting any two points on the curve lies entirely above the curve.

COAVRK function

This can be expressed mathematically as:
$f(\lambda a+(1-\lambda) b)<\lambda f(a)+(1-\lambda) f(b)$ for any $a \& b$ in the domain of the function $y=f(x)$; ie the curve lies below the line joining $a \& b$
(2) Examples of a concave function are $y=-x^{2}$ and $y=\ln x$. For a concave function, the line connecting any two points on the curve lies entirely below the curve.

concoue function

Mathematically,
$f(\lambda a+(1-\lambda) b)>\lambda f(a)+(1-\lambda) f(b)$ for any $a \& b$ in the domain of the function $y=f(x)$; ie the curve lies above the line joining $a \& b$
(3) Alternatively, a function is convex when $\frac{d^{2} y}{d x^{2}}>0$, and concave when $\frac{d^{2} y}{d x^{2}}<0$.

A point of inflexion occurs when $\frac{d^{2} y}{d x^{2}}$ changes sign. This is when a function changes from convex to concave (or the reverse).

