Complex Numbers - Part 3 (12 pages; 4/6/23)

(20) De Moivre's Theorem

The theorem states that, if $z=\cos \theta+i \sin \theta$, then
$z^{n}=\cos (n \theta)+i \sin (n \theta)$, where n can be fractional and/or negative

When n is a positive integer, this follows from the result established earlier that, where $z_{1}=r_{1}(\cos \theta+i \sin \theta)$ and $z_{2}=r_{2}(\cos \phi+i \sin \phi)$, then
$z_{1} z_{2}=r_{1} r_{2}\{\cos (\theta+\phi)+i \sin (\theta+\phi)\}$
Putting $z=z_{1}=z_{2}$ gives $z^{2}=\cos (2 \theta)+i \sin (2 \theta)$, and this can be extended to higher integers by the same method.

Exercise: Express $(1-i)^{6}$ in the form $x+i y$

Solution

First of all, express $z=1-i$ in modulus-argument form:
By considering the Argand diagram, $|z|=\sqrt{2} \& \arg (z)=-\frac{\pi}{4}$
So $z=\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)$
Then, by de Moivre's theorem,

$$
\begin{aligned}
& z^{6}=(\sqrt{2})^{6}\left(\cos \left(-\frac{6 \pi}{4}\right)+i \sin \left(-\frac{6 \pi}{4}\right)\right) \\
& =8\left(\cos \left(-\frac{3 \pi}{2}\right)+i \sin \left(-\frac{3 \pi}{2}\right)\right) \\
& =8\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)=8 i
\end{aligned}
$$

When n is a negative integer:

Let $n=-k$
Then $(\cos \theta+i \sin \theta)^{n}=\frac{1}{(\cos \theta+i \sin \theta)^{k}}=\frac{1}{\cos k \theta+i \operatorname{sink} \theta}$
$=\frac{1}{\cos k \theta+i \sin k \theta} \cdot \frac{\cos k \theta-i \sin k \theta}{\cos k \theta-i \sin k \theta}=\frac{\cos (-k \theta)+i \sin (-k \theta)}{\cos ^{2} k \theta+\sin ^{2} k \theta}$
$=\cos (n \theta)+i \sin (n \theta)$

Results following from de Moivre's theorem

(i) $(\cos \theta-i \sin \theta)^{n}=(\cos (-\theta)+i \sin (-\theta))^{n}$
$=\cos (-n \theta)+i \sin (-n \theta)=\cos (n \theta)-i \sin (n \theta)$
(ii) If $\mathrm{z}=\cos \theta+i \sin \theta$, then $z^{-1}=\cos (-\theta)+i \sin (-\theta)=\cos \theta-i \sin \theta=z^{*}$ (but note that $z^{-1}=z^{*}$ only when $|z|=1 ; z z^{*}=|z|^{2}$ also gives this result)
(iii) For general $z=r(\cos \theta+i \sin \theta), z^{-1}=\frac{1}{r}(\cos \theta-i \sin \theta)$ $=\frac{1}{r} \cdot \frac{z^{*}}{r}=\frac{z^{*}}{|z|^{2}}$

De Moivre's theorem can also be shown to be true for fractional n.
(21) Using de Moivre's Theorem to establish Trig. identities: Multiple angle formulae
Example: Show that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\cos 2 \theta=\operatorname{Re}\{\cos 2 \theta+i \sin 2 \theta\}=\operatorname{Re}\left\{(\cos \theta+i \sin \theta)^{2}\right\}$
$=R e\left\{\cos ^{2} \theta+2 i \cos \theta \sin \theta-\sin ^{2} \theta\right\}$
$=\cos ^{2} \theta-\sin ^{2} \theta$
(and similarly $\sin 2 \theta=2 \sin \theta \cos \theta$)

Exercise: Find an expression for $\sin 3 \theta$ in terms of powers of $\sin \theta$ and/or $\cos \theta$

Solution

$\sin 3 \theta=\operatorname{Im}(\cos 3 \theta+i \sin 3 \theta)$
$\cos 3 \theta+i \sin 3 \theta=(\cos \theta+i \sin \theta)^{3}$
$=\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+(i \sin \theta)^{3}$
Hence $\sin 3 \theta=3 \cos ^{2} \theta(\sin \theta)-\sin ^{3} \theta$
$=3\left(1-\sin ^{2} \theta\right)(\sin \theta)-\sin ^{3} \theta$
$=3 \sin \theta-4 \sin ^{3} \theta$

(22) Powers of Sines and Cosines

Powers of Cosines

To find $\cos ^{2} \theta$ in terms of $\cos 2 \theta$:
Starting point: $\cos \theta=\frac{1}{2}\left(z+z^{-1}\right)$,
where $\mathrm{z}=\cos \theta+i \sin \theta$ and $z^{-1}=\cos \theta-i \sin \theta$
Then $\cos ^{2} \theta=\frac{1}{4}\left(z+z^{-1}\right)^{2}=\frac{1}{4}\left(z^{2}+2+z^{-2}\right)$
Now $z^{2}+z^{-2}=(\cos 2 \theta+i \sin 2 \theta)+(\cos 2 \theta-i \sin 2 \theta)=2 \cos 2 \theta$
Hence $\cos ^{2} \theta=\frac{1}{4}(2+2 \cos 2 \theta)=\frac{1}{2}(1+\cos 2 \theta)$

Exercise: Show that $\cos ^{3} \theta=\frac{1}{4}(\cos 3 \theta+3 \cos \theta)$

Solution

$\cos \theta=\frac{1}{2}\left(z+z^{-1}\right)$
where $\mathrm{z}=\cos \theta+i \sin \theta$ and $z^{-1}=\cos \theta-i \sin \theta$
So $\cos ^{3} \theta=\frac{1}{8}\left(z+z^{-1}\right)^{3}=\frac{1}{8}\left(z^{3}+3 z+3 z^{-1}+z^{-3}\right)$
$=\frac{1}{8}\left\{3\left(z+z^{-1}\right)+\left(z^{3}+z^{-3}\right)\right\}$
$=\frac{1}{8}\{3(2 \cos \theta)+(2 \cos 3 \theta)\}$
$=\frac{1}{4}(\cos 3 \theta+3 \cos \theta)$

Powers of Sines

$i \sin \theta=\frac{1}{2}\left(z-z^{-1}\right)$,
where $\mathrm{z}=\cos \theta+i \sin \theta$ and $z^{-1}=\cos \theta-i \sin \theta$
So $-i \sin ^{3} \theta=\frac{1}{8}\left(z-z^{-1}\right)^{3}$

Exercise: Find an expression for $\sin ^{3} \theta$

Solution

(1) $\Rightarrow-8 i \sin ^{3} \theta=z^{3}-3 z+3 z^{-1}-z^{-3}$
$=z^{3}-z^{-3}-3\left(z-z^{-1}\right)$
$=2 i \sin (3 \theta)-3(2 i) \sin \theta$
Hence $\sin ^{3} \theta=-\frac{1}{8}(2 \sin (3 \theta)-6 \sin \theta)=\frac{1}{4}(3 \sin \theta-\sin (3 \theta))$

(23) Exponential form of complex number

$z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$

Justification (assuming knowledge of Maclaurin expansions of $\left.e^{x}, \cos x \& \sin x\right)$:
$e^{i \theta}=1+(i \theta)+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\cdots$
$=1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!} \ldots$
$=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)$
$=\cos \theta+i \sin \theta$

De Moivre's theorem is then simply: $\left(e^{i \theta}\right)^{n}=e^{i(n \theta)}$, as we would expect.

(24) Roots of Complex Numbers

Consider the equation $z^{3}=\cos \theta+i \sin \theta$
Then $z=\cos \left(\frac{\theta}{3}\right)+i \sin \left(\frac{\theta}{3}\right)$ is a solution
But $\cos \left(\frac{\theta}{3}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{\theta}{3}+\frac{2 \pi}{3}\right)$ is a solution as well
and so is $\cos \left(\frac{\theta}{3}+2\left(\frac{2 \pi}{3}\right)\right)+i \sin \left(\frac{\theta}{3}+2\left(\frac{2 \pi}{3}\right)\right)$
These are the solutions of $z=(\cos \theta+i \sin \theta)^{1 / 3}$

Exercise: When $\theta=0$, express these 3 solutions in the form $a+b i$, and show them on the Argand diagram.

Solution

$z_{1}=\cos \left(\frac{0}{3}\right)+i \sin \left(\frac{0}{3}\right)=1$
$z_{2}=\cos \left(\frac{0}{3}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{0}{3}+\frac{2 \pi}{3}\right)=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$

$$
z_{3}=\cos \left(\frac{0}{3}+2\left(\frac{2 \pi}{3}\right)\right)+i \sin \left(\frac{0}{3}+2\left(\frac{2 \pi}{3}\right)\right)=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

So there are 3 solutions of $z^{3}=\cos \theta+i \sin \theta$, spread evenly on a unit circle in the Argand diagram, starting at $\frac{\theta}{3}$. These are the 3 cube roots of $\cos \theta+i \sin \theta$.

More generally, there will be n roots of the equation
$z^{n}=r(\cos \theta+i \sin \theta) ;$
namely $z=r^{\frac{1}{n}}\left(\cos \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)\right)$
for $k=0,1, \ldots, n-1$
Note that $\frac{\theta}{n}+\frac{2 n \pi}{n}=\frac{\theta}{n}+2 \pi$, and so the root associated with $k=n$ is identical to that associated with $k=0$
(25) When r is a non-negative real number, \sqrt{r} is defined to be the positive square root (so that the solutions of $x^{2}=r$ are $x=$ $\pm \sqrt{r})$.
Because complex numbers are represented by points in the Argand diagram (in contrast to real numbers, which are represented by points on a number line), multiplication by -1 has a more complicated interpretation; namely as a rotation of 180°.
The square root of the complex number $z=r e^{i \theta}$
$(r \geq 0 \&-\pi<\theta \leq \pi)$ is defined as $\sqrt{z}=\sqrt{r} e^{i \theta / 2}$, and the solutions of $u^{2}=z$ are $u= \pm \sqrt{r} e^{i \theta / 2}$.

However, the complex square root function is not continuous, as when $z=e^{i \pi}, \sqrt{z}=e^{i \pi / 2}=i$, whilst for the neighbouring point in the Argand diagram, $z=e^{-i(\pi-\delta)}, \sqrt{z}=e^{-i(\pi-\delta) / 2}$, which is close to $e^{-i \pi / 2}=-i$. It can be shown that, for this reason, it is not generally true that $\sqrt{u v} \neq \sqrt{u} \sqrt{v}$. For example, $\sqrt{-1} \sqrt{-1}=i^{2}=$ -1 , but $\sqrt{(-1)(-1)}=\sqrt{1}=1$.

(26) Relation between the roots of unity

Example: The 5 roots of $z^{5}=1$ (the "roots of unity") are $\cos \theta+i \sin \theta$, where $\theta=\frac{2 k \pi}{5}$, for $k=0,1, \ldots, 4$
The 1 st root after 1 is commonly denoted by ω,
so that $\omega=\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right)$
Then $\omega^{2}=\cos \left(\frac{4 \pi}{5}\right)+i \sin \left(\frac{4 \pi}{5}\right)$, by de Moivre's theorem.
In general, $\omega^{k}=\cos \left(\frac{2 k \pi}{5}\right)+i \sin \left(\frac{2 k \pi}{5}\right)$,
and we can see that the 5 roots are: $1, \omega, \omega^{2}, \omega^{3} \& \omega^{4}$

These form the vertices of a polygon, as in the diagram below.

The following result will now be proved:
$1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0$

Approach 1 (algebraic)
This is a geometric series with common ratio ω, and so
$L H S=\frac{\omega^{5}-1}{\omega-1}=\frac{0}{\omega-1}\left(\right.$ as $\left.\omega^{5}=1\right)=0($ as $\omega \neq 1)$

Approach 2 (vectorial)
Treating complex numbers as vectors, $1+\omega$ can be created as a vertex of the (new) polygon shown below. This then leads to $1+\omega+\omega^{2}$, and so on.

The 5 sides of the polygon are $1, \omega, \omega^{2}, \omega^{3} \& \omega^{4}$, in their vector form (each side has length 1, and the directions they make with the positive real axis are $0, \frac{2 \pi}{5}, 2\left(\frac{2 \pi}{5}\right), 3\left(\frac{2 \pi}{5}\right), \ldots$)
[Note that $1, \omega, \omega^{2}, \omega^{3} \& \omega^{4}$ were the vertices of the 1 st polygon.]

From the diagram we see that the vector $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}$ is at the Origin; ie $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0$

Exercise: If $1, \omega, \omega^{2}$ are the cube roots of 1 , draw the polygon with vertices $1,1+\omega, 1+\omega+\omega^{2}$

Solution

(27) Transformations from z-plane to w-plane
(i) Concerned with effect on loci in the z-plane.
(ii) $w=z+a+b i$: translation
(iii) $w=k z$: enlargement of scale factor $k(>0)$ (centre the Origin)
(iv) Example (from Edx FP2, Ex 3H, Q4-p59) $w=2 z-5+3 i$; effect on the locus $|z-2|=4$? $\left(|z-2|=4\right.$ can be written $\left.(x-2)^{2}+y^{2}=16\right)$
Approach 1: enlargement of scale factor 2 , followed by translation $-5+3 i \Rightarrow$ centre of circle changes to 4 , and then to $4-5+3 i=$ $-1+3 i$; radius changes to 8 (translation has no effect)
Approach 2: $w=2 z-5+3 i \Rightarrow z=\frac{1}{2}(w+5-3 i)$

Then $|z-2|=4 \rightarrow\left|\frac{1}{2}(w+5-3 i)-2\right|=4$
$\Rightarrow|w+1-3 i|=8\left[\right.$ or $\left.(u+1)^{2}+(v-3)^{2}=64\right]$
(v) Example (from Edx FP2, Ex 3H, Q5(b))
$w=z-1+2 i ;$ effect on locus $\arg (z-1+i)=\frac{\pi}{4}$?
Approach 1: All points on the half line are translated by $-1+2 i$, with the direction of the line unchanged.

Approach 2: $w=z-1+2 i \Rightarrow z=w+1-2 i$
Then $\arg (z-1+i)=\frac{\pi}{4} \Rightarrow \arg (w+1-2 i-1+i)=\frac{\pi}{4}$
$\Rightarrow \arg (w-i)=\frac{\pi}{4}$
(vi) Example (from Edx FP2, Ex 3H, Q5(c))
$w=z-1+2 i$; effect on locus $y=2 x$
Approach 1: as above
Approach 2: Consider separately $z=0, \operatorname{argz}=\tan ^{-1} 2 \&$ $\arg z=\left(\tan ^{-1} 2\right)-\pi$; then replace z with $w+1-2 i$, as in (5).
(When $z=0, w=0-1+2 i$)
Equation of line in w-plane is $\frac{y-2}{x-(-1)}=2$, as line passes through $-1+2 i$, with the same gradient as before.
(vii) Example (from Edx FP2, Ex 3H, Q6(a))
$w=\frac{1}{z}$; effect on locus $|z|=2$?
$w=\frac{1}{z} \Rightarrow z=\frac{1}{w} ;$ then $|z|=2 \Rightarrow\left|\frac{1}{w}\right|=2 \Rightarrow|w|=\frac{1}{2}$
(viii) Example (from Edx FP2, Ex 3H, Q7(a))
$w=z^{2}$; show that going once round the circle $|z|=3 \rightarrow$ going twice round the circle $|w|=9$
$z=3 e^{\theta i}(0 \leq \theta<2 \pi) \rightarrow w=9 e^{2 \theta i}(0 \leq 2 \theta<4 \pi)$
(ix) Example (from Edx FP2, Ex 3H, Q12(a))
$w=\frac{-i z+i}{z+1} ;$ effect on $|z|=1$?
$w=\frac{-i z+i}{z+1} \Rightarrow(z+1) w=-i z+i \Rightarrow z(w+i)=i-w$
$\Rightarrow z=\frac{i-w}{w+i}$
Then $|z|=1 \Rightarrow|i-w|=|w+i| ;$ ie $|w-i|=|w+i|$

