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Complex Numbers - Part 3 (12 pages; 4/6/23)  

 

(20) De Moivre's Theorem 

The theorem states that, if 𝑧 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃, then  

𝑧𝑛 = 𝑐𝑜𝑠(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃) , where 𝑛 can be fractional and/or 

negative 

 

When 𝑛 is a positive integer, this follows from the result 

established earlier that, where  𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)  and 

𝑧2 = 𝑟2(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙), then  

𝑧1𝑧2 = 𝑟1𝑟2{𝑐𝑜𝑠(𝜃 + 𝜙) + 𝑖𝑠𝑖𝑛(𝜃 + 𝜙)}  

Putting  𝑧 = 𝑧1 = 𝑧2  gives  𝑧2 = 𝑐𝑜𝑠(2𝜃) + 𝑖𝑠𝑖𝑛(2𝜃), and this can 

be extended to higher integers by the same method. 

 

Exercise:  Express  (1 − 𝑖)6  in the form  𝑥 + 𝑖𝑦  

Solution 

First of all, express 𝑧 = 1 − 𝑖  in modulus-argument form: 

By considering the Argand diagram, |𝑧| = √2  & arg (𝑧) = −
𝜋

4
 

So 𝑧 = √2(cos (−
𝜋

4
) + 𝑖𝑠𝑖𝑛 (−

𝜋

4
)) 

Then, by de Moivre's theorem, 

 𝑧6 = (√2)
6

(cos (−
6𝜋

4
) + 𝑖𝑠𝑖𝑛(−

6𝜋

4
)) 

= 8 (cos (−
3𝜋

2
) + 𝑖𝑠𝑖𝑛 (−

3𝜋

2
))  

= 8 (cos (
𝜋

2
) + 𝑖𝑠𝑖𝑛 (

𝜋

2
)) = 8𝑖  

When 𝑛 is a negative integer: 
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Let  𝑛 = −𝑘    

Then  (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 =
1

(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃)𝑘 =
1

𝑐𝑜𝑠𝑘𝜃+𝑖𝑠𝑖𝑛𝑘𝜃
 

=
1

𝑐𝑜𝑠𝑘𝜃+𝑖𝑠𝑖𝑛𝑘𝜃
 . 

𝑐𝑜𝑠𝑘𝜃−𝑖𝑠𝑖𝑛𝑘𝜃

𝑐𝑜𝑠𝑘𝜃−𝑖𝑠𝑖𝑛𝑘𝜃
=

cos(−𝑘𝜃)+𝑖𝑠𝑖𝑛(−𝑘𝜃)

𝑐𝑜𝑠2𝑘𝜃+𝑠𝑖𝑛2𝑘𝜃
 

= cos (𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃)  

 

Results following from de Moivre's theorem 

(i) (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)𝑛 = (cos(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃))𝑛  

= cos(−𝑛𝜃) + 𝑖𝑠𝑖𝑛(−𝑛𝜃) = cos(𝑛𝜃) − 𝑖𝑠𝑖𝑛(𝑛𝜃)  

 

(ii) If  z = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃,  

then 𝑧−1 = cos(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃) = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 = 𝑧∗ 

(but note that 𝑧−1 = 𝑧∗  only when |𝑧| = 1;  𝑧𝑧∗ = |𝑧|2  also gives 

this result) 

 

(iii) For general 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃),  𝑧−1 =
1

𝑟
 (𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃) 

=
1

𝑟
 .  

𝑧∗

𝑟
=

𝑧∗

|𝑧|2   

 

De Moivre's theorem can also be shown to be true for fractional 𝑛.  

 

(21) Using de Moivre's Theorem to establish Trig. identities: 

Multiple angle formulae 

Example:  Show that  𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃 

𝑐𝑜𝑠2𝜃 = 𝑅𝑒{𝑐𝑜𝑠2𝜃 + 𝑖𝑠𝑖𝑛2𝜃} = 𝑅𝑒{(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)2}  

= 𝑅𝑒{𝑐𝑜𝑠2𝜃 + 2𝑖𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛2𝜃}  
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= 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃   

(and similarly  𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) 

 

Exercise:  Find an expression for 𝑠𝑖𝑛3𝜃   in terms of powers of 

𝑠𝑖𝑛𝜃  and/or 𝑐𝑜𝑠𝜃 

Solution 

𝑠𝑖𝑛3𝜃 = 𝐼𝑚(𝑐𝑜𝑠3𝜃 + 𝑖𝑠𝑖𝑛3𝜃)  

𝑐𝑜𝑠3𝜃 + 𝑖𝑠𝑖𝑛3𝜃 = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3   

= 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠2𝜃(𝑖𝑠𝑖𝑛𝜃) + 3𝑐𝑜𝑠𝜃(𝑖𝑠𝑖𝑛𝜃)2 + (𝑖𝑠𝑖𝑛𝜃)3   

Hence 𝑠𝑖𝑛3𝜃 = 3𝑐𝑜𝑠2𝜃(𝑠𝑖𝑛𝜃) − 𝑠𝑖𝑛3𝜃 

= 3(1 − 𝑠𝑖𝑛2𝜃)(𝑠𝑖𝑛𝜃) − 𝑠𝑖𝑛3𝜃  

= 3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3𝜃   

 

(22) Powers of Sines and Cosines  

Powers of Cosines 

To find 𝑐𝑜𝑠2𝜃  in terms of 𝑐𝑜𝑠2𝜃: 

Starting point: 𝑐𝑜𝑠𝜃 =
1

2
(𝑧 + 𝑧−1),   

where z = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃    and  𝑧−1 = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃  

Then  𝑐𝑜𝑠2𝜃 =
1

4
(𝑧 + 𝑧−1)2 =

1

4
(𝑧2 + 2 + 𝑧−2)  

Now  𝑧2 + 𝑧−2 = (𝑐𝑜𝑠2𝜃 + 𝑖𝑠𝑖𝑛2𝜃) + (𝑐𝑜𝑠2𝜃 − 𝑖𝑠𝑖𝑛2𝜃) = 2𝑐𝑜𝑠2𝜃 

Hence  𝑐𝑜𝑠2𝜃 =
1

4
(2 + 2𝑐𝑜𝑠2𝜃) =

1

2
(1 + 𝑐𝑜𝑠2𝜃) 

 

Exercise: Show that  𝑐𝑜𝑠3𝜃 =
1

4
(𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃)  
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Solution 

𝑐𝑜𝑠𝜃 =
1

2
(𝑧 + 𝑧−1)   

where z = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃    and  𝑧−1 = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 

So  𝑐𝑜𝑠3𝜃 =
1

8
(𝑧 + 𝑧−1)3 =

1

8
 (𝑧3 + 3𝑧 + 3𝑧−1 + 𝑧−3) 

=
1

8
{3(𝑧 + 𝑧−1) + (𝑧3 + 𝑧−3)}  

=
1

8
{3(2𝑐𝑜𝑠𝜃) + (2𝑐𝑜𝑠3𝜃)}  

=
1

4
(𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃)  

 

Powers of Sines 

𝑖𝑠𝑖𝑛𝜃 =
1

2
(𝑧 − 𝑧−1),   

where z = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃    and  𝑧−1 = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 

So  −𝑖𝑠𝑖𝑛3𝜃 =
1

8
(𝑧 − 𝑧−1)3   (1) 

 

Exercise: Find an expression for 𝑠𝑖𝑛3𝜃 

Solution 

(1) ⇒ −8𝑖𝑠𝑖𝑛3𝜃 = 𝑧3 − 3𝑧 + 3𝑧−1 − 𝑧−3  

= 𝑧3 − 𝑧−3 − 3(𝑧 − 𝑧−1)  

= 2𝑖𝑠𝑖𝑛(3𝜃) − 3(2𝑖)𝑠𝑖𝑛𝜃  

Hence  𝑠𝑖𝑛3𝜃 = −
1

8
 (2 sin(3𝜃) − 6𝑠𝑖𝑛𝜃) =

1

4
(3𝑠𝑖𝑛𝜃 − sin(3𝜃)) 

 

(23) Exponential form of complex number 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 𝑟𝑒𝑖𝜃   
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Justification (assuming knowledge of Maclaurin expansions of 

 𝑒𝑥 , 𝑐𝑜𝑠 𝑥 & sin 𝑥): 

𝑒𝑖𝜃 = 1 + (𝑖𝜃) +
(𝑖𝜃)2

2!
+

(𝑖𝜃)3

3!
+

(𝑖𝜃)4

4!
+

(𝑖𝜃)5

5!
+ ⋯  

= 1 + 𝑖𝜃 −
𝜃2

2!
−

𝑖𝜃3

3!
+

𝜃4

4!
+

𝑖𝜃5

5!
…  

= (1 −
𝜃2

2!
+

𝜃4

4!
+ ⋯ ) + 𝑖(𝜃 −

𝜃3

3!
+

𝜃5

5!
− ⋯ )  

= 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  

 

De Moivre's theorem is then simply:  (𝑒𝑖𝜃)
𝑛

= 𝑒𝑖(𝑛𝜃), as we would 

expect. 

 

(24) Roots of Complex Numbers 

Consider  the equation  𝑧3 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 

Then  𝑧 = 𝑐𝑜𝑠 (
𝜃

3
) + 𝑖𝑠𝑖𝑛 (

𝜃

3
)  is a solution 

But   𝑐𝑜𝑠 (
𝜃

3
+

2𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜃

3
+

2𝜋

3
)  is a solution as well 

and so is  𝑐𝑜𝑠 (
𝜃

3
+ 2(

2𝜋

3
)) + 𝑖𝑠𝑖𝑛 (

𝜃

3
+ 2(

2𝜋

3
)) 

These are the solutions of 𝑧 = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)1/3 

 

Exercise: When  𝜃 = 0,  express these 3 solutions in the form 

 𝑎 + 𝑏𝑖, and show them on the Argand diagram. 

Solution 

𝑧1 = 𝑐𝑜𝑠 (
0

3
) + 𝑖𝑠𝑖𝑛 (

0

3
) = 1  

𝑧2 = 𝑐𝑜𝑠 (
0

3
+

2𝜋

3
) + 𝑖𝑠𝑖𝑛 (

0

3
+

2𝜋

3
) = −

1

2
+ 𝑖

√3

2
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𝑧3 = 𝑐𝑜𝑠 (
0

3
+ 2(

2𝜋

3
)) + 𝑖𝑠𝑖𝑛 (

0

3
+ 2(

2𝜋

3
)) = −

1

2
− 𝑖

√3

2
  

 

 

 

 

 

 

 

 

 

 

 

So there are 3 solutions of  𝑧3 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃, spread evenly on a 

unit circle in the Argand diagram, starting at 
𝜃

3
. These are the 3 

cube roots of  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃. 

 

More generally, there will be  𝑛  roots of the equation  

𝑧𝑛 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃); 

namely  𝑧 = 𝑟
1

𝑛(cos (
𝜃

𝑛
+

2𝑘𝜋

𝑛
) + 𝑖𝑠𝑖𝑛 (

𝜃

𝑛
+

2𝑘𝜋

𝑛
)) 

for 𝑘 = 0,1, … , 𝑛 − 1 

Note that   
𝜃

𝑛
+

2𝑛𝜋

𝑛
=

𝜃

𝑛
+ 2𝜋, and so the root associated with 𝑘 = 𝑛 

is identical to that associated with 𝑘 = 0 
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(25) When 𝑟 is a non-negative real number, √𝑟 is defined to be 

the positive square root (so that the solutions of 𝑥2 = 𝑟 are 𝑥 =

±√𝑟). 

Because complex numbers are represented by points in the 

Argand diagram (in contrast to real numbers, which are 

represented by points on a number line), multiplication by −1 has 

a more complicated interpretation; namely as a rotation of 180°. 

The square root of the complex number 𝑧 = 𝑟𝑒𝑖𝜃   

(𝑟 ≥ 0 & − 𝜋 < 𝜃 ≤ 𝜋) is defined as √𝑧 = √𝑟𝑒𝑖𝜃/2, and the 

solutions of 𝑢2 = 𝑧 are 𝑢 = ±√𝑟𝑒𝑖𝜃/2. 

However, the complex square root function is not continuous, as 

when 𝑧 = 𝑒𝑖𝜋, √𝑧 = 𝑒𝑖𝜋/2 = 𝑖 , whilst for the neighbouring point in 

the Argand diagram, 𝑧 = 𝑒−𝑖(𝜋−𝛿), √𝑧 = 𝑒−𝑖(𝜋−𝛿)/2, which is close 

to 𝑒−𝑖𝜋/2 = −𝑖. It can be shown that, for this reason, it is not 

generally true that √𝑢𝑣 ≠ √𝑢√𝑣 . For example, √−1√−1 = 𝑖2 =

−1, but √(−1)(−1) = √1 = 1. 

 

(26) Relation between the roots of unity 

Example: The 5 roots of 𝑧5 = 1 (the "roots of unity") are 

𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃,  where 𝜃 =
2𝑘𝜋

5
, for 𝑘 = 0,1, … ,4 

The 1st root after 1 is commonly denoted by 𝜔,  

so that  𝜔 = 𝑐𝑜𝑠 (
2𝜋

5
) + 𝑖𝑠𝑖𝑛 (

2𝜋

5
) 

Then 𝜔2 = 𝑐𝑜𝑠 (
4𝜋

5
) + 𝑖𝑠𝑖𝑛 (

4𝜋

5
) , by de Moivre's theorem. 

In general, 𝜔𝑘 = 𝑐𝑜𝑠 (
2𝑘𝜋

5
) + 𝑖𝑠𝑖𝑛 (

2𝑘𝜋

5
),  

  

and we can see that the 5 roots are:  1, 𝜔, 𝜔2, 𝜔3 & 𝜔4  



 fmng.uk 

8 
 

These form the vertices of a polygon, as in the diagram below. 

 

  

The following result will now be proved: 

1 + 𝜔 + 𝜔2 + 𝜔3 + 𝜔4 = 0  

 

Approach 1 (algebraic) 

This is a geometric series with common ratio 𝜔, and so  

𝐿𝐻𝑆 =
𝜔5−1

𝜔−1
=

0

𝜔−1
  (as 𝜔5 = 1) = 0 (as 𝜔 ≠ 1) 

 

Approach 2 (vectorial) 

Treating complex numbers as vectors, 1 + 𝜔 can be created as a 

vertex of the (new) polygon shown below. This then leads to  

1 + 𝜔 + 𝜔2, and so on.  
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The 5 sides of the polygon are  1, 𝜔, 𝜔2, 𝜔3 & 𝜔4, in their vector 

form (each side has length 1, and the directions they make with 

the positive real axis are  0,
2𝜋

5
 , 2 (

2𝜋

5
) , 3 (

2𝜋

5
) , … ) 

[Note that 1, 𝜔, 𝜔2, 𝜔3 & 𝜔4 were the vertices of the 1st polygon.] 

 

 

From the diagram we see that   the vector 1 + 𝜔 + 𝜔2 + 𝜔3 + 𝜔4  

is at the Origin; ie 1 + 𝜔 + 𝜔2 + 𝜔3 + 𝜔4 = 0  

 

Exercise: If  1, 𝜔,  𝜔2  are the cube roots of 1, draw the polygon 

with vertices  1,  1 + 𝜔,  1 + 𝜔 + 𝜔2 

Solution 
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(27) Transformations from 𝒛-plane to 𝒘-plane  

(i) Concerned with effect on loci in the 𝑧-plane. 

 

(ii) 𝑤 = 𝑧 + 𝑎 + 𝑏𝑖: translation  

 

(iii) 𝑤 = 𝑘𝑧: enlargement of scale factor 𝑘(> 0) (centre the 

Origin) 

 

(iv) Example (from Edx FP2, Ex 3H, Q4 - p59) 

𝑤 = 2𝑧 − 5 + 3𝑖 ; effect on the locus |𝑧 − 2| = 4? 

(|𝑧 − 2| = 4 can be written (𝑥 − 2)2 + 𝑦2 = 16) 

Approach 1: enlargement of scale factor 2, followed by translation 

−5 + 3𝑖 ⇒ centre of circle changes to 4, and then to 4 − 5 + 3𝑖 =

−1 + 3𝑖; radius changes to 8 (translation has no effect) 

Approach 2: 𝑤 = 2𝑧 − 5 + 3𝑖 ⇒ 𝑧 =
1

2
(𝑤 + 5 − 3𝑖) 
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Then |𝑧 − 2| = 4 → |
1

2
(𝑤 + 5 − 3𝑖) − 2| = 4 

⇒ |𝑤 + 1 − 3𝑖| = 8  [or  (𝑢 + 1)2 + (𝑣 − 3)2 = 64] 

 

(v) Example (from Edx FP2, Ex 3H, Q5(b)) 

𝑤 = 𝑧 − 1 + 2𝑖 ; effect on locus arg(𝑧 − 1 + 𝑖) =
𝜋

4
? 

Approach 1: All points on the half line are translated by −1 + 2𝑖, 

with the direction of the line unchanged. 

Approach 2: 𝑤 = 𝑧 − 1 + 2𝑖 ⇒ 𝑧 = 𝑤 + 1 − 2𝑖 

Then arg(𝑧 − 1 + 𝑖) =
𝜋

4
⇒ arg( 𝑤 + 1 − 2𝑖 − 1 + 𝑖) =

𝜋

4
 

⇒ arg( 𝑤 − 𝑖) =
𝜋

4
  

 

(vi) Example (from Edx FP2, Ex 3H, Q5(c)) 

𝑤 = 𝑧 − 1 + 2𝑖 ; effect on locus 𝑦 = 2𝑥 

Approach 1: as above 

Approach 2: Consider separately 𝑧 = 0, 𝑎𝑟𝑔𝑧 = 𝑡𝑎𝑛−12 &  

𝑎𝑟𝑔𝑧 = (𝑡𝑎𝑛−12) − 𝜋 ; then replace 𝑧 with 𝑤 + 1 − 2𝑖, as in (5). 

(When 𝑧 = 0, 𝑤 = 0 − 1 + 2𝑖) 

Equation of line in 𝑤-plane is 
𝑦−2

𝑥−(−1)
= 2, as line passes through 

−1 + 2𝑖, with the same gradient as before. 

(vii) Example (from Edx FP2, Ex 3H, Q6(a)) 

𝑤 =
1

𝑧
 ; effect on locus |𝑧| = 2? 

𝑤 =
1

𝑧
⇒ 𝑧 =

1

𝑤
 ; then |𝑧| = 2 ⇒ |

1

𝑤
| = 2 ⇒ |𝑤| =

1

2
 

 

(viii) Example (from Edx FP2, Ex 3H, Q7(a)) 
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𝑤 = 𝑧2; show that going once round the circle |𝑧| = 3 → going 

twice round the circle |𝑤| = 9 

𝑧 = 3𝑒𝜃𝑖   (0 ≤ 𝜃 < 2𝜋) → 𝑤 = 9𝑒2𝜃𝑖   (0 ≤ 2𝜃 < 4𝜋)  

 

(ix) Example (from Edx FP2, Ex 3H, Q12(a)) 

𝑤 =
−𝑖𝑧+𝑖

𝑧+1
 ; effect on |𝑧| = 1? 

𝑤 =
−𝑖𝑧+𝑖

𝑧+1
⇒ (𝑧 + 1)𝑤 = −𝑖𝑧 + 𝑖 ⇒ 𝑧(𝑤 + 𝑖) = 𝑖 − 𝑤  

⇒ 𝑧 =
𝑖−𝑤

𝑤+𝑖
  

Then |𝑧| = 1 ⇒ |𝑖 − 𝑤| = |𝑤 + 𝑖|; ie |𝑤 − 𝑖| = |𝑤 + 𝑖| 

 

 

 

 

 

 

 

 

 

 


