Correction : The imaginary axis of the Argand diagram is labelled $i, 2 i, 3 i, \ldots$ in these notes. I would now recommend $1,2,3, \ldots$ instead.

(14) Operations with conjugates

(i) Clearly $\left(z^{*}\right)^{*}=z$
(ii) Let $u=a+b i$ and $v=c+d i$

Then $(u+v)^{*}=(a+b i+c+d i)^{*}=(a+c+[b+d] i)^{*}$
$=a+c-[b+d] i=(a-b i)+(c-d i)=u^{*}+v^{*}$
ie $(u+v)^{*}=u^{*}+v^{*}$
and similarly, $(u-v)^{*}=u^{*}-v^{*}$
(iii) Also, $\quad(a+b i)(c+d i)=a c-b d+(b c+a d) i$
and $(a-b i)(c-d i)=a c-b d-(b c+a d) i$
so that $(u v)^{*}=u^{*} v^{*}$
(A)

When $u=v=z,\left(z^{2}\right)^{*}=\left(z^{*}\right)^{2}$
and this can be extended to $\left(z^{n}\right)^{*}=\left(z^{*}\right)^{n}$
(iv) $(A) \Rightarrow \frac{(u v)^{*}}{v^{*}}=u^{*}$

If we let $u=\frac{p}{q}$ and $v=q$, then $\left(\frac{p}{q}\right)^{*}=\frac{p^{*}}{q^{*}}$
As a special case, $\left(\frac{1}{z}\right)^{*}=\frac{1}{z^{*}}$

(15) Polynomial Equations

Let $p(z)=a z^{3}+b z^{2}+c z+d \quad$ (where $\mathrm{a}, \mathrm{b}, \mathrm{c} \& \mathrm{~d}$ are real)
Then $(p(z))^{*}=\left(a z^{3}\right)^{*}+\left(b z^{2}\right)^{*}+(c z)^{*}+d^{*}$
$=a\left(z^{*}\right)^{3}+b\left(z^{*}\right)^{2}+c z^{*}+d$
$=p\left(z^{*}\right)$
So, if $p(z)=0, p\left(z^{*}\right)=(p(z))^{*}=0^{*}=0$
Hence, if α is a root of $p(z)=0$, where $p(z)$ is a polynomial with real coefficients, then α^{*} is also a root.

Example: If $2+i$ is a root of the equation

$$
x^{3}-7 x^{2}+17 x-15=0, \text { find the remaining roots }
$$

First of all, the conguate of $2+i$; ie $2-i$ is a root
So $x^{3}-7 x^{2}+17 x-15=(x-[2+i])(x-[2-i])(x-\alpha)$
$=([x-2]-i])([x-2]+i])(x-\alpha)$
$=\left[(x-2)^{2}-i^{2}\right](x-\alpha)$
$=\left(x^{2}-4 x+5\right)(x-\alpha)$
Then equating the constant terms, $\alpha=3$
(16) Because (non-real) complex roots come in conjugate pairs, the possibilities for the roots of cubic and quartic equations are as follows:
(a) cubic equation

3 real roots
1 real root \& 2 complex roots (conjugate pair)
(b) quartic equation

4 real roots
2 real roots \& 2 complex roots (conjugate pair)
4 complex roots (in conjugate pairs)
(17) $z_{2}-z_{1}$

By treating complex numbers in the Argand diagram as vectors, we see that:

$$
\begin{aligned}
& \left|z_{2}-z_{1}\right|=|A B| \\
& \text { and } \arg \left(z_{2}-z_{1}\right)= \\
& \alpha \text { (from the } \\
& \text { diagram below) }
\end{aligned}
$$

Problems involving moduli and arguments of complex numbers can often be converted to problems in geometry.

(18) Loci involving moduli

A locus is a collection of points satisfying a particular equation. The points will generally form a continuous curve.

Example: $|z-1|=2$
Approach 1: z must be a distance of 2 from $1+0 i$, and so the locus is that of a circle (see diagram below)

Let $z=x+y i$
Then $|z-1|=2 \Rightarrow|x-1+y i|=2$,
so that $\sqrt{(x-1)^{2}+y^{2}}=2$,
and hence $(x-1)^{2}+y^{2}=4$

Exercise: Represent $|z+1-2 i|=1$ on the Argand diagram, and demonstrate this algebraically.

Solution

$|z+1-2 i|=1 \Rightarrow|z-(-1+2 i)|=1$
ie a circle of radius 1 , centre $-1+2 i$

Algebraically, $|z-(-1+2 i)|^{2}=1$
$\Rightarrow|x+1+(y-2) i|^{2}=1$, if $z=x+y i$
$\Rightarrow(x+1)^{2}+(y-2)^{2}=1$

Example: Represent the inequality $|z-i|>|z+1|$ on the Argand diagram
The requirement is for z to be further from i than it is from -1 (writing $|z+1|$ as $|z-(-1)|$, as usual). This gives the shaded area in the diagram below. The border of this area is the perpendicular bisector of the line joining the points i and -1 .

Algebraically: Let $z=x+y i$
$|x+(y-1) i|^{2}>|(x+1)+y i|^{2}$
$\Rightarrow x^{2}+(y-1)^{2}>(x+1)^{2}+y^{2}$
$\Rightarrow-2 y>2 x$
$\Rightarrow y<-x$

Exercise: Represent $|z-i|=2|z+1|$ on an Argand diagram
This situation is much harder to visualise. Applying an algebraic approach:

Let $z=x+y i$
Then $|x+(y-1) i|^{2}=4|(x+1)+y i|^{2}$

$$
\begin{aligned}
& \Rightarrow x^{2}+(y-1)^{2}=4\left\{(x+1)^{2}+y^{2}\right\} \\
& \Rightarrow 3 x^{2}+8 x+3 y^{2}+2 y+3=0 \\
& \Rightarrow x^{2}+\frac{8 x}{3}+y^{2}+\frac{2 y}{3}+1=0 \\
& \Rightarrow\left(x+\frac{4}{3}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}-\frac{16}{9}-\frac{1}{9}+1=0 \\
& \Rightarrow\left(x+\frac{4}{3}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=\frac{8}{9}
\end{aligned}
$$

ie a circle centre $\left(-\frac{4}{3},-\frac{1}{3}\right)$, radius $\frac{2 \sqrt{2}}{3}$

(19) Loci involving arguments

Example: $\arg z=\frac{\pi}{4}$

Note: The Origin is excluded, as $\arg (0)$ is undefined Example: $\arg (z-i)=\frac{\pi}{4}$

Exercise: Show in an Argand diagram the set of points satisfying the inequality $-\frac{\pi}{4} \leq \arg (z+1) \leq \frac{\pi}{4}$

Example: Solve the simultaneous equations:
$\arg (z-2)=\frac{\pi}{2}$ and $\arg z=\frac{\pi}{6}$

$\Rightarrow z=2+2 \tan \left(\frac{\pi}{6}\right) i$
$=2+\frac{2}{\sqrt{3}} i$ or $2+\frac{2 \sqrt{3}}{3} i$

Exercise: Solve the simultaneous equations:
$\arg (z+i)=\pi$ and $\arg (z-i)=\frac{-3 \pi}{4}$

$\Rightarrow z=-2-i$

