Complex Numbers - Part 2 (12 pages; 4/6/23)

Correction : The imaginary axis of the Argand diagram is labelled *i*, 2*i*, 3*i*, ... in these notes. I would now recommend 1, 2, 3, ... instead.

(14) Operations with conjugates

(i) Clearly
$$(z^*)^* = z$$

(ii) Let u = a + bi and v = c + diThen $(u + v)^* = (a + bi + c + di)^* = (a + c + [b + d]i)^*$ $= a + c - [b + d]i = (a - bi) + (c - di) = u^* + v^*$ ie $(u + v)^* = u^* + v^*$ and similarly, $(u - v)^* = u^* - v^*$

(iii) Also, (a + bi)(c + di) = ac - bd + (bc + ad)iand (a - bi)(c - di) = ac - bd - (bc + ad)iso that $(uv)^* = u^*v^*$ (A) When u = v = z, $(z^2)^* = (z^*)^2$ and this can be extended to $(z^n)^* = (z^*)^n$

(iv)
$$(A) \Rightarrow \frac{(uv)^*}{v^*} = u^*$$

If we let $u = \frac{p}{q}$ and $v = q$, then $\left(\frac{p}{q}\right)^* = \frac{p^*}{q^*}$
As a special case, $\left(\frac{1}{z}\right)^* = \frac{1}{z^*}$

(15) Polynomial Equations

Let $p(z) = az^3 + bz^2 + cz + d$ (where a, b, c & d are real) Then $(p(z))^* = (az^3)^* + (bz^2)^* + (cz)^* + d^*$ $= a(z^*)^3 + b(z^*)^2 + cz^* + d$ $= p(z^*)$ So, if p(z) = 0, $p(z^*) = (p(z))^* = 0^* = 0$

Hence, if α is a root of p(z) = 0, where p(z) is a polynomial with real coefficients, then α^* is also a root.

Example: If 2 + i is a root of the equation $x^3 - 7x^2 + 17x - 15 = 0$, find the remaining roots

First of all, the conguate of
$$2 + i$$
; ie $2 - i$ is a root
So $x^3 - 7x^2 + 17x - 15 = (x - [2 + i])(x - [2 - i])(x - \alpha)$
 $= ([x - 2] - i])([x - 2] + i])(x - \alpha)$
 $= [(x - 2)^2 - i^2](x - \alpha)$
 $= (x^2 - 4x + 5)(x - \alpha)$

Then equating the constant terms, $\alpha = 3$

(16) Because (non-real) complex roots come in conjugate pairs, the possibilities for the roots of cubic and quartic equations are as follows:

(a) cubic equation

3 real roots

1 real root & 2 complex roots (conjugate pair)

(b) quartic equation

4 real roots

2 real roots & 2 complex roots (conjugate pair)

4 complex roots (in conjugate pairs)

(17) $z_2 - z_1$

By treating complex numbers in the Argand diagram as vectors, we see that:

 $|z_2 - z_1| = |AB|$ and $\arg(z_2 - z_1) = \alpha$ (from the diagram below) Problems involving moduli and arguments of complex numbers can often be converted to problems in geometry.

fmng.uk

(18) Loci involving moduli

A **locus** is a collection of points satisfying a particular equation. The points will generally form a continuous curve.

Example: |z - 1| = 2

Approach 1: z must be a

distance of 2 from 1 + 0i, and so the locus is that of a circle (see diagram below)

Approach 2

Let z = x + yiThen $|z - 1| = 2 \implies |x - 1 + yi| = 2$, so that $\sqrt{(x - 1)^2 + y^2} = 2$, and hence $(x - 1)^2 + y^2 = 4$

Exercise: Represent |z + 1 - 2i| = 1 on the Argand diagram, and demonstrate this algebraically.

Solution

 $|z + 1 - 2i| = 1 \Rightarrow |z - (-1 + 2i)| = 1$

ie a circle of radius 1, centre -1 + 2i

Algebraically, $|z - (-1 + 2i)|^2 = 1$ $\Rightarrow |x + 1 + (y - 2)i|^2 = 1$, if z = x + yi $\Rightarrow (x + 1)^2 + (y - 2)^2 = 1$ **Example:** Represent the inequality |z - i| > |z + 1| on the Argand diagram

The requirement is for z to be further from *i* than it is from -1

(writing |z + 1| as |z - (-1)|, as usual). This gives the shaded area in the diagram below. The border of this area is the perpendicular bisector of the line joining the points *i* and -1.

Algebraically: Let z = x + yi $|x + (y - 1)i|^2 > |(x + 1) + yi|^2$ $\Rightarrow x^2 + (y - 1)^2 > (x + 1)^2 + y^2$ $\Rightarrow -2y > 2x$ $\Rightarrow y < -x$

Exercise: Represent |z - i| = 2|z + 1| on an Argand diagram This situation is much harder to visualise. Applying an algebraic approach:

Let z = x + yiThen $|x + (y - 1)i|^2 = 4|(x + 1) + yi|^2$

fmng.uk

$$\Rightarrow x^{2} + (y - 1)^{2} = 4\{(x + 1)^{2} + y^{2}\} \Rightarrow 3x^{2} + 8x + 3y^{2} + 2y + 3 = 0 \Rightarrow x^{2} + \frac{8x}{3} + y^{2} + \frac{2y}{3} + 1 = 0 \Rightarrow (x + \frac{4}{3})^{2} + (y + \frac{1}{3})^{2} - \frac{16}{9} - \frac{1}{9} + 1 = 0 \Rightarrow (x + \frac{4}{3})^{2} + (y + \frac{1}{3})^{2} = \frac{8}{9} ie a circle centre $\left(-\frac{4}{3}, -\frac{1}{3}\right)$, radius $\frac{2\sqrt{2}}{3}$$$

(19) Loci involving arguments

Example: $\arg z = \frac{\pi}{4}$

Note: The Origin is excluded, as arg(0) is undefined

Exercise: Show in an Argand diagram the set of points satisfying the inequality $-\frac{\pi}{4} \le \arg(z+1) \le \frac{\pi}{4}$

Example: Solve the simultaneous equations:

 $\arg(z-2) = \frac{\pi}{2}$ and $\arg z = \frac{\pi}{6}$

$$\Rightarrow z = 2 + 2\tan\left(\frac{\pi}{6}\right)i$$
$$= 2 + \frac{2}{\sqrt{3}}i \text{ or } 2 + \frac{2\sqrt{3}}{3}i$$

Exercise: Solve the simultaneous equations:

 $\arg(z+i) = \pi$ and $\arg(z-i) = \frac{-3\pi}{4}$

fmng.uk

$\Rightarrow z = -2 - i$