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Complex Numbers - Part 1 (12 pages; 4/6/23)  

 

(1) Consider  𝑥2 + 1 = 0  ⇒ 𝑥 = √−1  

Define  𝑖 = √−1    so that  𝑖2 = −1 

For expressions involving 𝑖, apply the usual rules of algebra, and 

replace any occurrences of   𝑖2 with −1 

Examples 

(i)  (1 + 𝑖)(2 + 3𝑖) = 2 + 3𝑖 + 2𝑖 + 3𝑖2 = 2 + 5𝑖 − 3 = −1 + 5𝑖 

(ii) (2 + 3𝑖)(2 − 3𝑖) = 4 − (3𝑖)2 = 4 − 9𝑖2 = 4 − 9(−1) 

= 4 + 9 = 13  

(iii) 𝑖7 = (𝑖4)(𝑖2)𝑖 = (1)(−1)𝑖 = −𝑖 

(iv) To solve 𝑧2 + 16 = 0: 𝑧 = √−16 = √16√−1 = 4𝑖 

(v) 
2

𝑖
=

2𝑖

𝑖2 =
2𝑖

−1
= −2𝑖   

  

(The process in (v) is called 'rationalising the denominator'. 

Oddly enough, this is the same expression as is applied to 
2

√3
 , for 

example; even though in the case of  
2

𝑖
  we are making the 

denominator real, rather than rational!) 

 

Note: 𝑗 is sometimes used (especially by engineers) instead of 𝑖 

 

(2) If  𝑧 = 𝑎 + 𝑏𝑖 , where 𝑎 & 𝑏 are real numbers,  𝑎  is defined to 

be the real part of 𝑧, 𝑅𝑒(𝑧)  and  𝑏  is the imaginary part, 𝐼𝑚(𝑧). 

An imaginary number is defined to be a number of the form 𝑏𝑖 



 fmng.uk 

2 
 

[For clarity, it is sometimes referred to as a 'pure imaginary' 

number.] 

The definition of a complex number is a number of the form a + 𝑏𝑖 

(where 𝑎 and 𝑏 can be zero). 

 

Exercise: State whether the following are real, imaginary or 

complex (they could be more than one of these): 

(a) 1  (b) 1 + 2𝑖  (c)  2𝑖   (d) 0 

 Solution 

(a) real & complex 

(b) complex 

(c) imaginary & complex 

(d) real, imaginary & complex! 

 

For clarity, a number such as  1 + 2𝑖  is sometimes referred to as a 

'non-real complex' number. 

 

(3) Argand Diagram 

Complex numbers can be treated in a very similar way to vectors, 

by representing  𝑎 + 𝑏𝑖 (where 𝑎 & 𝑏 are real) by the point (𝑎, 𝑏) 

in the 'Argand diagram' (see below). 
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The two axes are referred to as the real and imaginary axes. 

Textbooks differ as to whether the imaginary axis should be 

labelled 1,2,3, … or 𝑖, 2𝑖, 3𝑖, …, The former is arguably more logical, 

as 1,2,3, … is the imaginary part. The Pearson Edexcel textbook 

uses 1,2,3, … The MEI FP1 textbook (ie the old syllabus) uses 

both! 

We can see that a real number is any number on the real axis, 

whilst an imaginary number is any number on the imaginary axis 

(and a complex number is any number in the Argand diagram). 

This explains why the number 0 is real, imaginary and complex. 

 

(4) Equating real and imaginary parts 

 Just as for vectors, if  𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖,  it follows that 

 𝑎 = 𝑐   𝑎𝑛𝑑   𝑏 = 𝑑 

This is a (very) commonly-used and powerful technique in 

Complex Numbers. 
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(5) Quadratic equations 

Consider  𝑧2 + 𝑧 + 1 = 0 

⇒ 𝑧 =
−1±√−3

2
=

−1±√−1√3

2
= −

1

2
± 𝑖

√3

2
  

 

If   𝑧 = 𝑎 + 𝑏𝑖,  then  𝑧∗ = 𝑎 − 𝑏𝑖  is defined as the (complex) 

conjugate of z. [𝑧∗ is sometimes written as 𝑧 ] 

In the Argand diagram, 𝑧∗ is the reflection in the real axis of 𝑧. 

 

If the coefficients of a quadratic equation are real and one of the 

roots is a non-real complex number, then the other root will be its 

conjugate. 

 

[The use of the letter 𝑧 is always a hint that non-real complex 

roots are expected.] 

 

Example: Find the quadratic equation with roots 

  1 + 𝑖  and  1 − 𝑖 

Method 1 

(𝑧 − [1 + 𝑖])(𝑧 − [1 − 𝑖)] = 0   (A) 

⇒ 𝑧2 + 𝑧(−1 + 𝑖 − 1 − 𝑖) + (1 − 𝑖2) = 0  

⇒ 𝑧2 − 2𝑧 + 2 = 0  

Or, from (A):  ([𝑧 − 1] − 𝑖)([𝑧 − 1] + 𝑖) = 0 

⇒ (𝑧 − 1)2 − 𝑖2 = 0  

⇒ 𝑧2 − 2𝑧 + 1 + 1 = 0 etc 

Method 2 

Let the equation be 𝑧2 + 𝑏𝑧 + 𝑐 = 0 
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Using the fact that the sum of the roots of   𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0 is 

−
𝑏

𝑎
 , whilst the product of the roots is 

𝑐

𝑎
 : 

(1 + 𝑖) + (1 − 𝑖) = −𝑏   and (1 + 𝑖)(1 − 𝑖) = 𝑐 

So  𝑏 = −2  and  𝑐 = 12 − 𝑖2 = 1 + 1 = 2 

and the equation is   𝑧2 − 2𝑧 + 2 = 0  

 

(6) Division by Complex Numbers 

Example: (2 + 5𝑖) ÷ (1 + 3𝑖) 

Method 1 

2+5𝑖

1+3𝑖
=

(2+5𝑖)(1−3𝑖)

(1+3𝑖)(1−3𝑖)
=

2+15−6𝑖+5𝑖

1−(3𝑖)2  =
17

10
−

𝑖

10
   

 

Check:  
1

10
(17 − 𝑖)(1 + 3𝑖) =

1

10
(17 + 3 − 𝑖 + 51𝑖) = 2 + 5𝑖 

 

Method 2 

Let (2 + 5𝑖) ÷ (1 + 3𝑖) = 𝑎 + 𝑏𝑖  

Then  2 + 5𝑖 = (𝑎 + 𝑏𝑖)(1 + 3𝑖) = 𝑎 + 3𝑎𝑖 + 𝑏𝑖 − 3𝑏 

Equating real & imaginary parts,  2 = 𝑎 − 3𝑏  (1) 

                                                        and  5 = 3𝑎 + 𝑏  (2) 

3 × (1): 6 = 3𝑎 − 9𝑏  (3)   

                 5 = 3𝑎 + 𝑏  (2)  

(3) − (2) ⇒ 1 = −10𝑏 ⇒ 𝑏 = −
1

10
   

(1) ⇒ 𝑎 = 2 + 3 (−
1

10
) =

20−3

10
=

17

10
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Exercise: Solve the equation   (2 + 𝑖)𝑧 + 3 = 0 

Solution 

Method 1 

(2 + 𝑖)𝑧 + 3 = 0 ⇒ 𝑧 =
−3

2+𝑖
=

−3(2−𝑖)

4+1
=

−6+3𝑖

5
  

Method 2 

Let  𝑧 = 𝑎 + 𝑏𝑖 

Then  (2 + 𝑖)(𝑎 + 𝑏𝑖) + 3 = 0 

⇒ 2𝑎 − 𝑏 + (𝑎 + 2𝑏)𝑖 + 3 = 0  

Equating real parts:  2𝑎 − 𝑏 = −3   (1) 

Equating imaginary parts:  𝑎 + 2𝑏 = 0   (2) 

Hence  2(−2𝑏) − 𝑏 = −3  and ∴ 𝑏 =
3

5
   and  𝑎 = −

6

5
 

 

Exercise    Solve the equation  2𝑧 = 𝑖𝑧∗ + 1 

Solution 

Let  𝑧 = 𝑎 + 𝑏𝑖 

⇒ 2(𝑎 + 𝑏𝑖) = 𝑖(𝑎 − 𝑏𝑖) + 1  

Equating real parts:  2𝑎 = 𝑏 + 1 

Equating imaginary parts:   2𝑏 = 𝑎 

⇒ 𝑏 =
1

3
 & 𝑎 =

2

3
 , so that 𝑧 =

1

3
(2 + 𝑖) 

 

(7) Example: Find √𝒊 

Let  √𝑖 = 𝑎 + 𝑏𝑖 

Then  𝑖 = (𝑎 + 𝑏𝑖)2 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 
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Note: Because 𝑖 = (𝑎 + 𝑏𝑖)2 ⇒ ±√𝑖 = 𝑎 + 𝑏𝑖 (rather than just 

√𝑖 = 𝑎 + 𝑏𝑖), we need to ensure that the eventual solution does 

satisfy √𝑖 = 𝑎 + 𝑏𝑖. In fact, it isn't an issue because if  𝑎 + 𝑏𝑖  is 

one solution we would expect −(𝑎 + 𝑏𝑖) to be a solution as well; 

ie √𝑖 = −(𝑎 + 𝑏𝑖), so that  −√𝑖 = 𝑎 + 𝑏𝑖  

 

Equating real & imaginary parts, 

2𝑎𝑏 = 1  (1) &   𝑎2 − 𝑏2 = 0 (2) 

(2) ⇒ 𝑏 = ±𝑎  

Case 1: 𝒃 = 𝒂 

(1) ⇒ 2𝑎2 = 1    

⇒ 𝑎 = 𝑏 = ±
1

√2
  

Case 2: 𝒃 = −𝒂 

(1) ⇒ −2𝑎2 = 1 , which isn't possible 

 

Hence solution is:   √𝑖 = ±
1

√2
(1 + 𝑖) =  ±

√2

2
(1 + 𝑖) 

Check:  
1

2
(1 + 𝑖)2 =

1

2
(1 − 1 + 2𝑖) = 𝑖 

 

(8) Modulus  

Referring to the diagram below, the modulus of z, denoted by 

|𝑧| , is defined as the magnitude of 𝑧 when viewed as a vector in 

the Argand diagram. 

Thus    |𝑧| = √𝑥2 + 𝑦2 

Also,  (𝑥 + 𝑦𝑖)(𝑥 − 𝑦𝑖) = 𝑥2 + 𝑦2, 

so that  𝑧𝑧∗ = |𝑧|2 
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Note that the modulus is always positive; eg  |−2𝑖| = 2 

 

(9) Argument  

The argument of 𝑧, denoted by arg(𝑧) [or just arg 𝑧], is defined to 

be the angle that 𝑧 makes with the positive real axis, when 𝑧 is 

viewed as a vector in the Argand diagram. 

So arg(𝑧) = 𝜃 in the above diagram. 

The argument is usually measured in radians, and is usually 

restricted so that  −𝜋 < arg (𝑧) ≤ 𝜋  

For example, if  𝜋 < 𝜃 ≤ 3𝜋, then arg(𝑧) = 𝜃 − 2𝜋, 

and if  −3𝜋 < 𝜃 ≤ −𝜋, then arg(𝑧) = 𝜃 + 2𝜋 

[An alternative convention that is sometimes used requires that 

0 < arg (𝑧) ≤ 2𝜋]  

Note that arg(0) is not defined. 

 

For 𝑧 = 𝑥 + 𝑦𝑖, 𝑡𝑎𝑛𝜃 =
𝑦

𝑥
  when 𝑧 is in the 1st quadrant, and in 

this case  arg(𝑧) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
). 
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When 𝑧 is not in the 1st quadrant, it is still the case that  𝑡𝑎𝑛𝜃 =
𝑦

𝑥
 

(by the definition of 𝑠𝑖𝑛𝜃 & 𝑐𝑜𝑠𝜃  for angles ≥
𝜋

2
), but it may be 

necessary to add or subtract 𝜋 from 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
). 

For example,  −3 − 2𝑖  is diametrically opposite  3 + 2𝑖, and  

arg(−3 − 2𝑖) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
−2

−3
) − 𝜋  

Also, 𝑎𝑟𝑐𝑡𝑎𝑛(−1) = −
𝜋

4
 , so that arg(−4 + 4𝑖) = arctan (

4

−4
) + 𝜋 

 

Sometimes the argument can be easily established by referring to 

the Argand diagram.   

Examples 

(i) arg(−3𝑖) = −
𝜋

2
 

(ii) arg(−1 + 𝑖) =
3𝜋

4
 

 

(10) Polar (or modulus-argument) form 

Let   𝑟 = |𝑧| = √𝑥2 + 𝑦2               

Then 𝑥 = 𝑟𝑐𝑜𝑠𝜃 

and  𝑦 = 𝑟𝑠𝑖𝑛𝜃 

Thus  𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

This is the polar or modulus-argument 

form; 

sometimes written as (𝑟, 𝜃)  or  

(informally) as  𝑟𝑐𝑖𝑠𝜃 

Examples 

(i)  z = 1 + √3 𝑖 
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|𝑧| = √1 + 3 = 2  

arg(𝑧) = arctan (
√3

1
) =

𝜋

3
 (no adjustment is necessary, since 𝑧 is in 

the 1st quadrant) 

So 𝑧 = 2(𝑐𝑜𝑠 (
𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

3
) 

Alternatively, having found the modulus, we could write 

 𝑧 = 2(
1

2
+

√3

2
𝑖), and then recognise the angle from 

 𝑐𝑜𝑠𝜃 =
1

2
 & 𝑠𝑖𝑛𝜃 =

√3

2
   

 

(ii)  𝑧 = −2 

|𝑧| = 2  & arg (𝑧) = 𝜋,  

so  𝑧 = 2(cos(𝜋) + 𝑖𝑠𝑖𝑛(𝜋)) 

 

(11) Product of two complex numbers 

Let  𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)  and  𝑧2 = 𝑟2(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙) 

Then  𝑧1𝑧2 = 𝑟1𝑟2(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙) 

= 𝑟1𝑟2{(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙) + 𝑖(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)}  

= 𝑟1𝑟2{𝑐𝑜𝑠(𝜃 + 𝜙) + 𝑖𝑠𝑖𝑛(𝜃 + 𝜙)}   

(applying the compound angle formulae) 

So  |𝑧1𝑧2| = |𝑧1|. |𝑧2|   and  arg(𝑧1𝑧2) = arg(𝑧1) + arg(𝑧2) 

Thus when 𝑧1 is multiplied by 𝑧2 , there are two effects: 

The modulus of  𝑧1 is multiplied by the modulus of  𝑧2, and there 

is a rotation of 𝜙 𝑟𝑎𝑑 anti-clockwise. 

Note: we have to subtract 2𝜋 from 𝜃 + 𝜙 if it exceeds 𝜋 

 



 fmng.uk 

11 
 

(12) Dividing by a complex number 

If  𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)  and  𝑧2 = 𝑟2(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙), 

𝑧1

𝑧2
=

𝑟1(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃)

𝑟2(𝑐𝑜𝑠𝜙+𝑖𝑠𝑖𝑛𝜙)
  

=
𝑟1(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃)(𝑐𝑜𝑠𝜙−𝑖𝑠𝑖𝑛𝜙)

𝑟2(𝑐𝑜𝑠𝜙+𝑖𝑠𝑖𝑛𝜙)(𝑐𝑜𝑠𝜙−𝑖𝑠𝑖𝑛𝜙)
  

=
𝑟1(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃)(𝑐𝑜𝑠𝜙−𝑖𝑠𝑖𝑛𝜙)

𝑟2(𝑐𝑜𝑠2𝜙+𝑠𝑖𝑛2𝜙)
  

=
𝑟1

𝑟2
{(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙) + 𝑖(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)}  

=
𝑟1

𝑟2
{𝑐𝑜𝑠(𝜃 − 𝜙) + 𝑖𝑠𝑖𝑛(𝜃 − 𝜙)}  

So when 𝑧1 is divided by 𝑧2 : 

The modulus of  𝑧1 is divided by the modulus of  𝑧2, and there is a 

rotation of 𝜙 𝑟𝑎𝑑 clockwise. 

Note: Add 2𝜋 𝑡𝑜 𝜃 − 𝜙 if it is less than  −𝜋 

 

(13) Exercises  

(i) Use the modulus-argument form to establish the relation 

between 𝑧  and 𝑖𝑧  on the Argand diagram. 

Solution 

Let 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)  and write  𝑖 = 𝑐𝑜𝑠 (
𝜋

2
) + 𝑖𝑠𝑖𝑛 (

𝜋

2
) 

Then 𝑖𝑧 = 𝑟{𝑐𝑜𝑠 (𝜃 +
𝜋

2
) + 𝑖𝑠𝑖𝑛 (𝜃 +

𝜋

2
) 

Thus  𝑖𝑧  is obtained from 𝑧  by a rotation of 
𝜋

2
 radians (anti-

clockwise) about the Origin. 

 

(ii) Use the modulus-argument form to demonstrate that 

 𝑧𝑧∗ = |𝑧|2 
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Solution 

Let 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃), so that  

𝑧∗ = 𝑟(𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃) = 𝑟(cos(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃))  

and  𝑧𝑧∗ = 𝑟2{cos (𝜃 − 𝜃) + 𝑖𝑠𝑖𝑛(𝜃 − 𝜃)}  

= |𝑧|2(1)  

 

Alternatively: 

 𝑧𝑧∗ = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑟(𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃)  

= 𝑟2(𝑐𝑜𝑠2𝜃 − (𝑖𝑠𝑖𝑛𝜃)2)  

= 𝑟2(𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃)  

= |𝑧|2  

 

 


