Complex Numbers - Part 1 (12 pages; 4/6/23)
(1) Consider $x^{2}+1=0 \Rightarrow x=\sqrt{-1}$

Define $i=\sqrt{-1}$ so that $i^{2}=-1$
For expressions involving i, apply the usual rules of algebra, and replace any occurrences of i^{2} with -1

Examples

(i) $(1+i)(2+3 i)=2+3 i+2 i+3 i^{2}=2+5 i-3=-1+5 i$
(ii) $(2+3 i)(2-3 i)=4-(3 i)^{2}=4-9 i^{2}=4-9(-1)$
$=4+9=13$
(iii) $i^{7}=\left(i^{4}\right)\left(i^{2}\right) i=(1)(-1) i=-i$
(iv) To solve $z^{2}+16=0: z=\sqrt{-16}=\sqrt{16} \sqrt{-1}=4 i$
(v) $\frac{2}{i}=\frac{2 i}{i^{2}}=\frac{2 i}{-1}=-2 i$
(The process in (v) is called 'rationalising the denominator'. Oddly enough, this is the same expression as is applied to $\frac{2}{\sqrt{3}}$, for example; even though in the case of $\frac{2}{i}$ we are making the denominator real, rather than rational!)

Note: j is sometimes used (especially by engineers) instead of i
(2) If $z=a+b i$, where $a \& b$ are real numbers, a is defined to be the real part of $z, \operatorname{Re}(z)$ and b is the imaginary part, $\operatorname{Im}(z)$. An imaginary number is defined to be a number of the form $b i$
[For clarity, it is sometimes referred to as a 'pure imaginary' number.]
The definition of a complex number is a number of the form a $+b i$ (where a and b can be zero).

Exercise: State whether the following are real, imaginary or complex (they could be more than one of these):
(a) 1
(b) $1+2 i$
(c) $2 i$
(d) 0

Solution
(a) real \& complex
(b) complex
(c) imaginary \& complex
(d) real, imaginary \& complex!

For clarity, a number such as $1+2 i$ is sometimes referred to as a 'non-real complex' number.

(3) Argand Diagram

Complex numbers can be treated in a very similar way to vectors, by representing $a+b i$ (where $a \& b$ are real) by the point (a, b) in the 'Argand diagram' (see below).

The two axes are referred to as the real and imaginary axes.
Textbooks differ as to whether the imaginary axis should be labelled $1,2,3, \ldots$ or $i, 2 i, 3 i, \ldots$, The former is arguably more logical, as $1,2,3, \ldots$ is the imaginary part. The Pearson Edexcel textbook uses $1,2,3, \ldots$ The MEI FP1 textbook (ie the old syllabus) uses both!

We can see that a real number is any number on the real axis, whilst an imaginary number is any number on the imaginary axis (and a complex number is any number in the Argand diagram). This explains why the number 0 is real, imaginary and complex.

(4) Equating real and imaginary parts

Just as for vectors, if $a+b i=c+d i$, it follows that $a=c$ and $b=d$

This is a (very) commonly-used and powerful technique in Complex Numbers.

(5) Quadratic equations

Consider $z^{2}+z+1=0$
$\Rightarrow Z=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1 \pm \sqrt{-1} \sqrt{3}}{2}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

If $z=a+b i$, then $z^{*}=a-b i$ is defined as the (complex) conjugate of z. [z^{*} is sometimes written as \bar{z}]
In the Argand diagram, z^{*} is the reflection in the real axis of z.

If the coefficients of a quadratic equation are real and one of the roots is a non-real complex number, then the other root will be its conjugate.
[The use of the letter z is always a hint that non-real complex roots are expected.]

Example: Find the quadratic equation with roots

$$
1+i \text { and } 1-i
$$

Method 1

$(z-[1+i])(z-[1-i)]=0$
$\Rightarrow z^{2}+z(-1+i-1-i)+\left(1-i^{2}\right)=0$
$\Rightarrow z^{2}-2 z+2=0$
Or, from $(\mathrm{A}):([z-1]-i)([z-1]+i)=0$
$\Rightarrow(z-1)^{2}-i^{2}=0$
$\Rightarrow z^{2}-2 z+1+1=0$ etc

Method 2

Let the equation be $z^{2}+b z+c=0$

Using the fact that the sum of the roots of $a z^{2}+b z+c=0$ is $-\frac{b}{a}$, whilst the product of the roots is $\frac{c}{a}$:
$(1+i)+(1-i)=-b$ and $(1+i)(1-i)=c$
So $b=-2$ and $c=1^{2}-i^{2}=1+1=2$
and the equation is $z^{2}-2 z+2=0$

(6) Division by Complex Numbers

Example: $(2+5 i) \div(1+3 i)$

Method 1

$\frac{2+5 i}{1+3 i}=\frac{(2+5 i)(1-3 i)}{(1+3 i)(1-3 i)}=\frac{2+15-6 i+5 i}{1-(3 i)^{2}}=\frac{17}{10}-\frac{i}{10}$

Check: $\frac{1}{10}(17-i)(1+3 i)=\frac{1}{10}(17+3-i+51 i)=2+5 i$

Method 2

Let $(2+5 i) \div(1+3 i)=a+b i$
Then $2+5 i=(a+b i)(1+3 i)=a+3 a i+b i-3 b$
Equating real \& imaginary parts, $2=a-3 b$

$$
\begin{equation*}
\text { and } 5=3 a+b \tag{1}
\end{equation*}
$$

$3 \times(1): 6=3 a-9 b$ (3)

$$
\begin{equation*}
5=3 a+b \tag{2}
\end{equation*}
$$

(3) $-(2) \Rightarrow 1=-10 b \Rightarrow b=-\frac{1}{10}$
(1) $\Rightarrow a=2+3\left(-\frac{1}{10}\right)=\frac{20-3}{10}=\frac{17}{10}$

Exercise: Solve the equation $(2+i) z+3=0$

Solution

Method 1

$(2+i) z+3=0 \Rightarrow z=\frac{-3}{2+i}=\frac{-3(2-i)}{4+1}=\frac{-6+3 i}{5}$
Method 2
Let $z=a+b i$
Then $(2+i)(a+b i)+3=0$
$\Rightarrow 2 a-b+(a+2 b) i+3=0$
Equating real parts: $2 a-b=-3$
Equating imaginary parts: $a+2 b=0$
Hence $2(-2 b)-b=-3$ and $\therefore b=\frac{3}{5}$ and $a=-\frac{6}{5}$

Exercise Solve the equation $2 z=i z^{*}+1$
Solution
Let $z=a+b i$
$\Rightarrow 2(a+b i)=i(a-b i)+1$
Equating real parts: $2 a=b+1$
Equating imaginary parts: $2 b=a$
$\Rightarrow b=\frac{1}{3} \& a=\frac{2}{3}$, so that $z=\frac{1}{3}(2+i)$

(7) Example: Find $\sqrt{\boldsymbol{i}}$

Let $\sqrt{i}=a+b i$
Then $i=(a+b i)^{2}=a^{2}-b^{2}+2 a b i$

Note: Because $i=(a+b i)^{2} \Rightarrow \pm \sqrt{i}=a+b i$ (rather than just $\sqrt{i}=a+b i)$, we need to ensure that the eventual solution does satisfy $\sqrt{i}=a+b i$. In fact, it isn't an issue because if $a+b i$ is one solution we would expect $-(a+b i)$ to be a solution as well; ie $\sqrt{i}=-(a+b i)$, so that $-\sqrt{i}=a+b i$

Equating real \& imaginary parts,
$2 a b=1(1) \& a^{2}-b^{2}=0(2)$
(2) $\Rightarrow b= \pm a$

Case 1: $b=a$
(1) $\Rightarrow 2 a^{2}=1$
$\Rightarrow a=b= \pm \frac{1}{\sqrt{2}}$
Case 2: $b=-a$
(1) $\Rightarrow-2 a^{2}=1$, which isn't possible

Hence solution is: $\sqrt{i}= \pm \frac{1}{\sqrt{2}}(1+i)= \pm \frac{\sqrt{2}}{2}(1+i)$
Check: $\frac{1}{2}(1+i)^{2}=\frac{1}{2}(1-1+2 i)=i$

(8) Modulus

Referring to the diagram below, the modulus of z , denoted by $|z|$, is defined as the magnitude of z when viewed as a vector in the Argand diagram.
Thus $|z|=\sqrt{x^{2}+y^{2}}$
Also, $(x+y i)(x-y i)=x^{2}+y^{2}$,
so that $z z^{*}=|z|^{2}$

Note that the modulus is always positive; eg $|-2 i|=2$

(9) Argument

The argument of z, denoted by $\arg (z)$ [or just $\arg z$], is defined to be the angle that z makes with the positive real axis, when z is viewed as a vector in the Argand diagram.

So $\arg (z)=\theta$ in the above diagram.
The argument is usually measured in radians, and is usually restricted so that $-\pi<\arg (z) \leq \pi$

For example, if $\pi<\theta \leq 3 \pi$, then $\arg (z)=\theta-2 \pi$, and if $-3 \pi<\theta \leq-\pi$, then $\arg (z)=\theta+2 \pi$
[An alternative convention that is sometimes used requires that $0<\arg (z) \leq 2 \pi]$
Note that $\arg (0)$ is not defined.

For $z=x+y i, \tan \theta=\frac{y}{x}$ when z is in the 1 st quadrant, and in this case $\arg (z)=\arctan \left(\frac{y}{x}\right)$.

When z is not in the 1 st quadrant, it is still the case that $\tan \theta=\frac{y}{x}$ (by the definition of $\sin \theta \& \cos \theta$ for angles $\geq \frac{\pi}{2}$), but it may be necessary to add or subtract π from $\arctan \left(\frac{y}{x}\right)$.

For example, $-3-2 i$ is diametrically opposite $3+2 i$, and $\arg (-3-2 i)=\arctan \left(\frac{-2}{-3}\right)-\pi$
Also, $\arctan (-1)=-\frac{\pi}{4}$, so that $\arg (-4+4 i)=\arctan \left(\frac{4}{-4}\right)+\pi$

Sometimes the argument can be easily established by referring to the Argand diagram.

Examples

(i) $\arg (-3 i)=-\frac{\pi}{2}$
(ii) $\arg (-1+i)=\frac{3 \pi}{4}$

(10) Polar (or modulus-argument) form

Let $r=|z|=\sqrt{x^{2}+y^{2}}$
Then $x=r \cos \theta$
and $y=r \sin \theta$
Thus $z=r(\cos \theta+i \sin \theta)$
This is the polar or modulus-argument form;
sometimes written as (r, θ) or
(informally) as rcis θ

Examples

(i) $\mathrm{z}=1+\sqrt{3} i$
$|z|=\sqrt{1+3}=2$
$\arg (z)=\arctan \left(\frac{\sqrt{3}}{1}\right)=\frac{\pi}{3}$ (no adjustment is necessary, since z is in the 1st quadrant)
So $z=2\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right.$
Alternatively, having found the modulus, we could write $z=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$, and then recognise the angle from $\cos \theta=\frac{1}{2} \& \sin \theta=\frac{\sqrt{3}}{2}$
(ii) $z=-2$
$|z|=2 \& \arg (z)=\pi$,
so $z=2(\cos (\pi)+i \sin (\pi))$

(11) Product of two complex numbers

Let $z_{1}=r_{1}(\cos \theta+i \sin \theta)$ and $z_{2}=r_{2}(\cos \phi+i \sin \phi)$
Then $z_{1} z_{2}=r_{1} r_{2}(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)$
$=r_{1} r_{2}\{(\cos \theta \cos \phi-\sin \theta \sin \phi)+i(\sin \theta \cos \phi+\cos \theta \sin \phi)\}$
$=r_{1} r_{2}\{\cos (\theta+\phi)+i \sin (\theta+\phi)\}$
(applying the compound angle formulae)
So $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$ and $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
Thus when z_{1} is multiplied by z_{2}, there are two effects:
The modulus of z_{1} is multiplied by the modulus of z_{2}, and there is a rotation of ϕ rad anti-clockwise.

Note: we have to subtract 2π from $\theta+\phi$ if it exceeds π

(12) Dividing by a complex number

If $z_{1}=r_{1}(\cos \theta+i \sin \theta)$ and $z_{2}=r_{2}(\cos \phi+i \sin \phi)$,
$\frac{z_{1}}{z_{2}}=\frac{r_{1}(\cos \theta+i \sin \theta)}{r_{2}(\cos \phi+i \sin \phi)}$
$=\frac{r_{1}(\cos \theta+i \sin \theta)(\cos \phi-i \sin \phi)}{r_{2}(\cos \phi+i \sin \phi)(\cos \phi-i \sin \phi)}$
$=\frac{r_{1}(\cos \theta+i \sin \theta)(\cos \phi-i \sin \phi)}{r_{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)}$
$=\frac{r_{1}}{r_{2}}\{(\cos \theta \cos \phi+\sin \theta \sin \phi)+i(\sin \theta \cos \phi-\cos \theta \sin \phi)\}$
$=\frac{r_{1}}{r_{2}}\{\cos (\theta-\phi)+i \sin (\theta-\phi)\}$
So when z_{1} is divided by z_{2} :
The modulus of z_{1} is divided by the modulus of z_{2}, and there is a rotation of ϕ rad clockwise.

Note: Add 2π to $\theta-\phi$ if it is less than $-\pi$

(13) Exercises

(i) Use the modulus-argument form to establish the relation between z and $i z$ on the Argand diagram.

Solution

Let $z=r(\cos \theta+i \sin \theta)$ and write $i=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)$
Then $i z=r\left\{\cos \left(\theta+\frac{\pi}{2}\right)+i \sin \left(\theta+\frac{\pi}{2}\right)\right.$
Thus $i z$ is obtained from z by a rotation of $\frac{\pi}{2}$ radians (anticlockwise) about the Origin.
(ii) Use the modulus-argument form to demonstrate that $z z^{*}=|z|^{2}$

Solution

Let $z=r(\cos \theta+i \sin \theta)$, so that
$z^{*}=r(\cos \theta-i \sin \theta)=r(\cos (-\theta)+i \sin (-\theta))$
and $z z^{*}=r^{2}\{\cos (\theta-\theta)+i \sin (\theta-\theta)\}$
$=|z|^{2}(1)$

Alternatively:
$z z^{*}=r(\cos \theta+i \sin \theta) r(\cos \theta-i \sin \theta)$
$=r^{2}\left(\cos ^{2} \theta-(i \sin \theta)^{2}\right)$
$=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$=|z|^{2}$

