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Complex Numbers - Part 1 (12 pages; 4/6/23)

(1) Consider x>+ 1=0 =>x=+v-1
Define i =v—1 sothat i? = —1

For expressions involving i, apply the usual rules of algebra, and
replace any occurrences of i% with —1

Examples

() A+D)R2+3i)=2+3i+2i+3i?’=2+5i—3=-1+5i
(i) 2+3)2-3)=4—-3)2=4-9i2=4-9(-1)
=4+9=13

(i) i” = (M (D)i = V) (-1)i = —i

(iv) Tosolve z2 + 16 = 0:z = V—16 = V16V—1 = 4i

2 21 21 .
Wi=g==4

(The process in (v) is called 'rationalising the denominator’.
2

3,f0r

Oddly enough, this is the same expression as is applied to

: 2 :
example; even though in the case of - weare making the

denominator real, rather than rational!)
Note: j is sometimes used (especially by engineers) instead of i

(2)If z=a + bi,where a & b are real numbers, a is defined to
be the real part of z, Re(z) and b is the imaginary part, Im(z).

An imaginary number is defined to be a number of the form bi
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[For clarity, it is sometimes referred to as a 'pure imaginary'
number.]

The definition of a complex number is a number of the form a + bi

(where a and b can be zero).

Exercise: State whether the following are real, imaginary or
complex (they could be more than one of these):

(@1 (b)1+2i(c)2i (d)O
Solution

(a) real & complex

(b) complex

(c¢) imaginary & complex

(d) real, imaginary & complex!

For clarity, a number such as 1 + 2i is sometimes referred to as a
'non-real complex' number.

(3) Argand Diagram

Complex numbers can be treated in a very similar way to vectors,
by representing a + bi (where a & b are real) by the point (a, b)
in the 'Argand diagram' (see below).
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The two axes are referred to as the real and imaginary axes.

Textbooks differ as to whether the imaginary axis should be
labelled 1,2,3, ... or i, 2i, 3i, ..., The former is arguably more logical,
as 1,2,3, ... is the imaginary part. The Pearson Edexcel textbook
uses 1,2,3, ... The MEI FP1 textbook (ie the old syllabus) uses
both!

We can see that a real number is any number on the real axis,
whilst an imaginary number is any number on the imaginary axis
(and a complex number is any number in the Argand diagram).
This explains why the number 0 is real, imaginary and complex.

(4) Equating real and imaginary parts
Just as for vectors, if a + bi = ¢ + di, it follows that
a=c and b=d

This is a (very) commonly-used and powerful technique in
Complex Numbers.
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(5) Quadratic equations

Consider z?2 +z+1=0

U
N

Il

I

I

I
N =
I+
~ |35

If z=a+ bi, then z* = a — bi is defined as the (complex)
conjugate of z. [z* is sometimes written as Z |

In the Argand diagram, z"* is the reflection in the real axis of z.

If the coefficients of a quadratic equation are real and one of the
roots is a non-real complex number, then the other root will be its
conjugate.

[The use of the letter z is always a hint that non-real complex
roots are expected.]

Example: Find the quadratic equation with roots
1+iand 1—1

Method 1

(z-[1+iDE-[1-D]=0 (A)

>z24+z-1+i—-1-D+1-i®>)=0

=2z2-2z+2=0

Or, from (A): ([z—1]-D(z—-1]+i) =0

>(z-1)2%-i?=0

=>z2—-2z+1+1=0etc

Method 2

Let the equation be z> + bz + ¢ = 0

4
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Using the fact that the sum of the roots of az? + bz+ ¢ = 0 is
— Z , whilst the product of the roots is 2 :
1+i)+(1-i)=-b and(1+ (1 —-i)=c
Sob=-2and c=1?2-i?=14+1=2

and the equationis z?—2z+2=0

(6) Division by Complex Numbers
Example: (2 + 5i) = (1 + 3i)

Method 1
2+5i _ (2+450)(1-30) _ 2+15-6i+5i _ 17 i
1+3i  (1+3i)(1-3i)  1-3i)2 10 10

Check: 1—10(17—1')(1+3i) =1—10(17+3—i+51i) =2 +5i

Method 2

Let (2+ 5i) -~ (14 3i) =a+ bi

Then 2+ 5i = (a+ bi)(1+3i) =a+ 3ai+ bi—3b

Equating real & imaginary parts, 2 =a — 3b (1)
and 5=3a+b (2)

3xX(1):6=3a—-9b (3)

5=3a+b (2)
(3)-()=>1=-10b > b=—=

1 20-3 17
W=a=2+3(-3)="=3



Exercise: Solve the equation (2+i)z+3 =0

Solution

Method 1
2+0)z+3=02z=—="CD="0"
Method 2

Let z =a + bi

Then 2+ i)(a+bi)+3=0
=2a—b+(@+2b)i+3=0

Equating real parts: 2a —b = -3 (1)
Equating imaginary parts: a+ 2b =0 (2)

Hence 2(—2b) —b =-3 and ~ b =§ and a = _g

Exercise Solve the equation 2z =iz" + 1
Solution

Let z=a + bi

= 2(a+bi)=i(a—bi)+1

Equating real parts: 2a =b + 1

Equating imaginary parts: 2b = a

=>b=§&a=§,sothatz=§(2+i)

(7) Example: Find Vi
Let Vi =a + bi
Then i = (a + bi)? = a? — b? + 2abi

fmng.uk
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Note: Because i = (a + bi)? = ++/i = a + bi (rather than just
Vi=a+ bi), we need to ensure that the eventual solution does

satisfy Vi = a + bi.In fact, it isn't an issue because if a + bi is
one solution we would expect —(a + bi) to be a solution as well;

ieVi = —(a + bi), so that —i = a + bi

Equating real & imaginary parts,

2ab=1 (1) & a?—b%=0(2)

(2)=b==a
Casel:b=a
(1) =>2a?=1

1
:a—b—iﬁ

Case2:b = —a

(1) = —2a? = 1, which isn't possible

Hence solution is: i = i\/—li (1+10)= ig(l + 1)

Check: %(1+i)2 =§(1—1+2i) =i

(8) Modulus

Referring to the diagram below, the modulus of z, denoted by
|z| , is defined as the magnitude of z when viewed as a vector in
the Argand diagram.

Thus |z| = {/x2 + y?
Also, (x + yi)(x — yi) = x? + y?,

so that zz* = |z|?
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Note that the modulus is always positive; eg |—2i| = 2

(9) Argument

The argument of z, denoted by arg(z) [or just arg z], is defined to
be the angle that z makes with the positive real axis, when z is
viewed as a vector in the Argand diagram.

So arg(z) = 6 in the above diagram.

The argument is usually measured in radians, and is usually
restricted sothat —m <arg(z) <=

For example, if m < 6 < 3m, then arg(z) = 6 — 2m,
and if —3m < 6 < —m, thenarg(z) =60 + 2n

[An alternative convention that is sometimes used requires that
0 < arg(z) < 2n]

Note that arg(0) is not defined.

Forz = x + yi, tanf = % when z is in the 1st quadrant, and in

this case arg(z) = arctan (y )

X
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When z is not in the 1st quadrant, it is still the case that tanf = %

(by the definition of sinf & cosf for angles > g), but it may be

necessary to add or subtract  from arctan G)
For example, —3 — 2i is diametrically opposite 3 + 2i, and
arg(—3 — 2i) = arctan (:—2) —

Also, arctan(—1) = — %, so that arg(—4 + 4i) = arctan (_%) +

Sometimes the argument can be easily established by referring to
the Argand diagram.

Examples
(i) arg(=30) = -~

(i) arg(—1 +1i) = %ﬂ

(10) Polar (or modulus-argument) form
Let r = |z| = \/m

Then x = rcosf

and y = rsinf

Thus z = r(cos6 + isinf)

This is the polar or modulus-argument .
form; "

sometimes written as (r,0) or
(informally) as rcis6@

Examples

() z=1+V3i ) .

4-"-. 1t
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|z| =v1+3 =2
arg(z) = arctan (Lf) = g (no adjustment is necessary, since z is in
the 1st quadrant)
s .. [
Soz = 2(cos (E) + isin (E)
Alternatively, having found the modulus, we could write
V3

zZ = 2(% + 1), and then recognise the angle from

cosf = 1 & sinf = ¥3
2 2

(ii) z = -2
|z| =2 &arg (z) =,

so z = 2(cos(m) + isin(m))

(11) Product of two complex numbers

Let z; = ry(cosO + isinf) and z, = r,(cosp + ising)
Then z,z, = r;1r,(cosO + isinf)(cosg + ising)

= n1{(cosbcosp — sinbsing) + i(sinfcosp + cosOsing)}
= nnr{cos(6 + ¢) + isin(6 + ¢p)}

(applying the compound angle formulae)

So |217,| = |21].12;| and arg(z,z,) = arg(z,) + arg(z;)
Thus when z; is multiplied by z, , there are two effects:

The modulus of z; is multiplied by the modulus of z,, and there
is a rotation of ¢ rad anti-clockwise.

Note: we have to subtract 27 from 6 + ¢ if it exceeds

10
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(12) Dividing by a complex number

If zy = ry(cos + isinB) and z, = ry(cos¢ + ising),

z; __ 11(cos@+isin®)

Zy a ry(cosp+ising)
11(cosO+isinB)(cosp—ising)

o (cosp+ising)(cosp—ising)

r1(cosO+isin@)(cosp—ising)
15(cos2¢p+sin?¢)

= %{(cos@coscp + sinfsing) + i(sinbcos¢p — cosOsing)}
2

1

= —={cos(8 — ¢) + isin(0 — ¢)}

2
So when z; is divided by z, :

The modulus of z,; is divided by the modulus of z,, and there is a
rotation of ¢ rad clockwise.

Note: Add 2w to 6 — ¢ ifitisless than —mx

(13) Exercises

(i) Use the modulus-argument form to establish the relation
between z and iz on the Argand diagram.

Solution
Let z = r(cosO + isinf) and write i = cos (g) + isin (g)
Then iz = r{cos (0 + g) + isin (0 + %)

Thus iz is obtained from z by a rotation of g radians (anti-

clockwise) about the Origin.

(ii) Use the modulus-argument form to demonstrate that

zz* = |z|?

11
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Solution

Let z = r(cosO + isinf), so that

z* =r(cosf — isinf) = r(cos(—80) + isin(—0))
and zz* = r?{cos (6 — 0) + isin(0 — 8)}

= |z|>(1)

Alternatively:

zz* = r(cosO + isinB)r(cosf — isinh)
= 12(cos?0 — (isinf)?)

= r%(cos?0 + sin?0)

= |z|?

12



