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Complex Numbers Exercises (16 pages; 17/2/20) 

 

(1*) Find  (2 + 5𝑖) ÷ (1 + 3𝑖)  by two methods 

Solution 

Method 1 

2+5𝑖

1+3𝑖
=

(2+5𝑖)(1−3𝑖)

(1+3𝑖)(1−3𝑖)
=

2+15−6𝑖+5𝑖

1+9
 =

17

10
−

𝑖

10
   

Check:  
1

10
(17 − 𝑖)(1 + 3𝑖) =

1

10
(17 + 3 − 𝑖 + 51𝑖) = 2 + 5𝑖 

Method 2 

Let  (2 + 5𝑖) ÷ (1 + 3𝑖) = 𝑎 + 𝑏𝑖 

Then  2 + 5𝑖 = (𝑎 + 𝑏𝑖)(1 + 3𝑖) = 𝑎 + 3𝑎𝑖 + 𝑏𝑖 − 3𝑏  

Equating real parts:  2 = 𝑎 − 3𝑏   (1) 

Equating imaginary parts:  5 = 3𝑎 + 𝑏  (2) 

(1) + 3 × (2) ⇒ 17 = 10𝑎 ⇒ 𝑎 =
17

10
  

Then  (2) ⇒ 𝑏 = 5 −
51

10
= −

1

10
 

So (2 + 5𝑖) ÷ (1 + 3𝑖) =
17

10
−

𝑖

10
 

 

(2*) Solve the equation   (2 + 𝑖)𝑧 + 3 = 0  by two methods 

Solution 

Method 1 

(2 + 𝑖)𝑧 + 3 = 0 ⇒ 𝑧 =
−3

2+𝑖
=

−3(2−𝑖)

(2+𝑖)(2−𝑖)
=

−6+3𝑖

4+1
= −

6

5
+

3𝑖

5
  

Method 2 
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Let  𝑧 = 𝑎 + 𝑏𝑖 

Then  (2 + 𝑖)(𝑎 + 𝑏𝑖) + 3 = 0 

⇒ 2𝑎 − 𝑏 + (𝑎 + 2𝑏)𝑖 + 3 = 0  

Equating real parts:  2𝑎 − 𝑏 = −3   (1) 

Equating imaginary parts:  𝑎 + 2𝑏 = 0   (2) 

Substituting for a from (2) into (1),   2(−2𝑏) − 𝑏 = −3  and ∴ 𝑏 =
3

5
   and  𝑎 = −

6

5
 

so that  𝑧 = −
6

5
+

3𝑖

5
 

 

(3*) Solve the equation 𝑧2 − 2𝑧 + 2 = 0  
 
(a) by completing the square 
(b) by equating real & imaginary parts 
 

Solution 

(a) 𝑧2 − 2𝑧 + 2 = 0  

⇒ (𝑧 − 1)2 + 12 = 0  

⇒ ([𝑧 − 1] + 𝑖)([𝑧 − 1] − 𝑖) = 0  

⇒ 𝑧 = 1 − 𝑖  𝑜𝑟  1 + 𝑖  

 

(b) Let  𝑧 = 𝑎 + 𝑏𝑖 

Then  (𝑎 + 𝑏𝑖)2 − 2(𝑎 + 𝑏𝑖) + 2 = 0 

⇒ 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 − 2𝑎 − 2𝑏𝑖 + 2 = 0  

equating real parts:  𝑎2 − 𝑏2 − 2𝑎 + 2 = 0   (1) 
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equating imaginary parts:  2𝑎𝑏 − 2𝑏 = 0   (2) 

(2) ⇒ 𝑏(𝑎 − 1) = 0 ⇒ 𝑏 = 0  𝑜𝑟  𝑎 = 1  

From (1), 𝑏 = 0 ⇒ 𝑎2 − 2𝑎 + 2 = 0  

(this can be excluded, as a  is real and there are no real solutions 

to the quadratic equation) 

𝑎 = 1 ⇒ 1 − 𝑏2 = 0 ⇒ 𝑏 = ±1  

Hence  𝑧 = 1 ± 𝑖 

 

 
(4*) Represent the following on the Argand diagram: 

(i)  |𝑧 − 𝑖| > |𝑧 + 1| 

(ii)  |𝑧 − 𝑖| = 2|𝑧 + 1|   

Solution 

(i) Let  𝑧 = 𝑥 + 𝑦𝑖 

Then |𝑧 − 𝑖| > |𝑧 + 1|  

⇒ |𝑥 + (𝑦 − 1)𝑖|2 > |(𝑥 + 1) + 𝑦𝑖|2   

⇒ 𝑥2 + (𝑦 − 1)2 > (𝑥 + 1)2 + 𝑦2  

⇒ −2𝑦 > 2𝑥  

⇒ 𝑦 < −𝑥  
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(ii) Let  𝑧 = 𝑥 + 𝑦𝑖 

Then   |𝑧 − 𝑖| = 2|𝑧 + 1| 

 ⇒ |𝑥 + (𝑦 − 1)𝑖|2 = 4|(𝑥 + 1) + 𝑦𝑖|2   

⇒ 𝑥2 + (𝑦 − 1)2 = 4{(𝑥 + 1)2 + 𝑦2 } 

⇒ 3𝑥2 + 8𝑥 + 3𝑦2 + 2𝑦 + 3 = 0  

⇒ 𝑥2 +
8𝑥

3
+ 𝑦2 +

2𝑦

3
+ 1 = 0  

⇒ (𝑥 +
4

3
)2 + (𝑦 +

1

3
)2 −

16

9
−

1

9
+ 1 = 0  

⇒ (𝑥 +
4

3
)2 + (𝑦 +

1

3
)2 =

8

9
  



 fmng.uk 

5 
 

 

 

 

 

(5*) 1 + 3𝑖  is a root of the equation  𝑧3 + 𝑝𝑧 + 𝑞 = 0 (where p & 

q are real). Find the other roots, and the values of p & q  

Solution 

As the coefficients of the equation are real, 1 − 3𝑖 will also be a 

root. 

Then the equation can be written as 

(𝑧 − [1 + 3𝑖])(𝑧 − [1 − 3𝑖])(𝑧 − 𝛼) = 0  , where 𝛼 is the 3rd root. 

Expanding this gives (𝑧2 − 2𝑧 + 10)(𝑧 − 𝛼) = 0 

and hence   𝑧3 − (2 + 𝛼)𝑧2 + (10 + 2𝛼)𝑧 − 10𝛼 = 0 

Comparing the coefficients with those of 𝑧3 + 𝑝𝑧 + 𝑞 = 0, 

we see that 𝛼 = −2, so that   𝑝 = 6  and 𝑞 = 20 
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Alternative method 

Using the standard results that the roots 𝛼, 𝛽 & 𝛾 of the equation 

𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0  satisfy  𝛼 + 𝛽 + 𝛾 = −
𝑏

𝑎
 , 𝛼𝛽 + 𝛼𝛾 +

𝛽𝛾 =
𝑐

𝑎
 and 𝛼𝛽𝛾 = −

𝑑

𝑎
       (*): 

(1 + 3𝑖) + (1 − 3𝑖) + 𝛼 = 0  [since 𝑏 = 0] 

Hence 𝛼 = −2 

Also   (1 + 3𝑖)(1 − 3𝑖) − 2(1 + 3𝑖) − 2(1 − 3𝑖) = 𝑝, 

so that  10 − 2 − 2 = 𝑝  and  𝑝 = 6 

And   −2(1 + 3𝑖)(1 − 3𝑖) = −𝑞, 

so that 𝑞 = 2(10) = 20 

Notes 

(a) A cubic function  𝑦 = 𝑓(𝑥)  with real coefficients will cross the 

𝑥-axis at least once, and so 𝑓(𝑥) = 0  has at least one real root (𝛼, 

say). Then, factorising 𝑓(𝑥) as  (𝑥 − 𝛼)𝑔(𝑥)  means that, if 𝛽 is a 

complex root of 𝑓(𝑥) = 0, then 𝛽∗, the complex conjugate of 𝛽, 

must be the other root (considering the two roots derived from 

the quadratic formula). 

[This could also have been written as 𝑦 = 𝑓(𝑧)  etc] 

(b) (*) follows from expanding (𝑧 − 𝛼)(𝑧 − 𝛽)(𝑧 − 𝛾) = 0, and is 

in fact true whether the coefficients  a, b & c are real or complex 

 

(6*) Find the square roots of  3 − 4𝑖 

Solution 

We need to find z  such that 𝑧2 = 3 − 4𝑖 

Let  𝑧 = 𝑎 + 𝑏𝑖 
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Then  𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 = 3 − 4𝑖 

Equating real and imaginary parts,  𝑎2 − 𝑏2 = 3  and  2𝑎𝑏 = −4 

Hence  𝑏 = −
2

𝑎
  and  𝑎2 −

4

𝑎2 = 3,  so that  𝑎4 − 3𝑎2 − 4 = 0 

Then  (𝑎2 − 4)(𝑎2 + 1) = 0 

As  𝑎 is real, 𝑎 = ±2   and  𝑏 = ∓1 

Thus  the square roots are  2 − 𝑖  and  −2 + 𝑖    or  ±(2 − 𝑖) 

 

(7***) Let  𝑧 =
𝑎+𝑖

1+𝑎𝑖
 .  If 𝑎𝑟𝑔𝑧 = −

𝜋

4
 ,  find  the possible values of  𝑎 

Solution 

𝑧  can be written as 𝑥 − 𝑥𝑖, where 𝑥 > 0, 

so that  (𝑥 − 𝑥𝑖)(1 + 𝑎𝑖) = 𝑎 + 𝑖 

and 𝑥 + 𝑥𝑎𝑖 − 𝑥𝑖 + 𝑥𝑎 = 𝑎 + 𝑖 

Then equating real and imaginary parts: 

𝑥 + 𝑥𝑎 = 𝑎  &  𝑥𝑎 − 𝑥 = 1;  

ie  𝑥(1 + 𝑎) = 𝑎  &  𝑥(𝑎 − 1) = 1, 

so that  𝑥 =
𝑎

1+𝑎
=

1

𝑎−1
 

and  𝑎2 − 𝑎 = 1 + 𝑎 

⇒ 𝑎2 − 2𝑎 − 1 = 0  

⇒ 𝑎 =
2±√8

2
= 1 ± √2  

Also 𝑥 > 0: 

𝑎 = 1 ± √2 ⇒ 𝑥 =
1

𝑎−1
=

1

±√2
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so that  𝑎 = 1 + √2 

 

(8*) For each of the following numbers, say whether they are 

imaginary or complex (or both): 

(i) 1  (ii) 𝑖  (iii) 0  (iv) 1 + 𝑖 

Solution 

All four are complex (as they appear somewhere in the Argand 

diagram). Only the numbers 𝑖 and 0 are imaginary (as they 

appear on the imaginary axis). 

Imaginary numbers are sometimes referred to as "pure 

imaginary", to avoid confusion. 

[1 + 𝑖 can be described as "non-real complex", to distinguish it 

from "real and complex" numbers such as 1] 

 

(9*) Are these statements true or false? (Give an explanation, or a 

counter example, as appropriate.) 

(i) All imaginary numbers are complex numbers. 

(ii) All complex numbers are imaginary numbers. 

(iii) All real numbers are complex numbers. 

(iv) Zero is an imaginary number. 

(v) The imaginary part of a complex number is an imaginary 

number. 

(vi) All complex numbers are either real numbers or imaginary 

numbers. 

(vii) Two imaginary numbers added together can sometimes give 

a real number. 
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(viii) If two complex numbers multiply to give a real number, then 

they must be conjugates of each other. 

(ix) The square root of a non-real complex number is never real. 

Solution 

(i) True: An imaginary number is a number of the form 𝑏𝑖, where 

 𝑏 is real; a complex number is a number of the form 𝑎 + 𝑏𝑖, 

where  𝑎 & 𝑏 are real, and 𝑎 can equal zero. Note: "imaginary" 

numbers are often referred to as "pure imaginary" numbers, to 

avoid confusion. 

(ii) False: The complex number  𝑎 + 𝑏𝑖, where 𝑎 ≠ 0 is not 

imaginary, by the definition in (i). 

(iii) True: 𝑎 + 0𝑖  is complex. 

(iv) True: 0 = 0𝑖 is imaginary 

(v) False: The imaginary part of 𝑎 + 𝑏𝑖  is 𝑏 (not 𝑏𝑖 : there is an 

error to this effect in the AQA FP2 website booklet - unless it's 

been corrected) 

(vi) False: 2 + 3𝑖 is neither real nor imaginary. 

(vii) True: For example, 𝑖 & − 𝑖 

(viii) False: For example, 𝑖 & 𝑖 

(ix) True: Suppose that √𝑎 + 𝑏𝑖 = 𝑐, where 𝑎, 𝑏 ≠ 0  & 𝑐 are real; 

then 𝑎 + 𝑏𝑖 = 𝑐2, and equating imaginary parts ⇒ 𝑏 = 0, which is 

a contradiction 
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(10*) How are the complex numbers 𝑧  and  𝑧𝑖  related? 

Solution 

|𝑖| = 1 & 𝑎𝑟𝑔(𝑖) =
𝜋

2
 ; hence multiplication by 𝑖 has the effect of 

rotating 𝑧 by 
𝜋

2
 anti-clockwise. 

 

(11***) Find the solutions of  𝑧2 = 𝑖  by 

(a) setting 𝑧 = 𝑎 + 𝑏𝑖 and equating real and imaginary parts 

(b) using de Moivre's theorem  

Solution 

(a) Let  √𝑖 = 𝑎 + 𝑏𝑖 

Then  𝑖 = (𝑎 + 𝑏𝑖)2 = 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 

Equating real & imaginary parts, 

2𝑎𝑏 = 1  (1) &   𝑎2 − 𝑏2 = 0 (2) 

⇒ 𝑎2 − (
1

2𝑎
)

2
= 0  

⇒ (𝑎 −
1

2𝑎
) (𝑎 +

1

2𝑎
) = 0  

⇒ either  𝑎 =
1

2𝑎
⇒ 𝑎2 =

1

2
⇒ 𝑎 = ±

1

√2
  

or  𝑎 = −
1

2𝑎
⇒ 𝑎2 = −

1

2
  (not possible, as 𝑎 is real) 

Then  𝑎 = +
1

√2
⇒ 𝑏 =

1

2𝑎
=

√2

2
=

1

√2
  , from (1) 

and 𝑎 = −
1

√2
⇒ 𝑏 = −

1

√2
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Thus  √𝑖 = ±
1

√2
(1 + 𝑖)   

(This can be checked by squaring the RHS.) 

(b) 𝑧2 = 𝑖 = cos (
𝜋

2
) + 𝑖𝑠𝑖𝑛(

𝜋

2
) 

By De Moivre's theorem, 𝑧 = cos (
𝜋

4
) + 𝑖𝑠𝑖𝑛(

𝜋

4
) =

1

√2
(1 + 𝑖)   

or  𝑧 = cos (
𝜋

4
+

(−2𝜋)

2
) + 𝑖𝑠𝑖𝑛 (

𝜋

4
+

(−2𝜋)

2
) 

= cos (−
3𝜋

4
) + 𝑖𝑠𝑖𝑛(−

3𝜋

4
) = −

1

√2
(1 + 𝑖)   

[Note that  
𝜋

4
+

(−2𝜋)

2
 is chosen as the argument of the 2nd root, 

rather than 
𝜋

4
+

2𝜋

2
 , to avoid having to subtract 2𝜋 at the end.] 

 

(12*) Simplify  𝑒𝑖𝜋 + 1 

Solution 

arg(𝑒𝑖𝜋) = 𝜋   and  |𝑒𝑖𝜋| = 1, 

so  𝑒𝑖𝜋 = −1, and 𝑒𝑖𝜋 + 1 = 0 

 

(13*) How are the complex numbers  𝑧  and  
1

𝑧
  related to each 

other? 

Solution 

|
1

𝑧
| =

1

|𝑧|
  and 𝑎𝑟𝑔 (

1

𝑧
) = 𝑎𝑟𝑔(1) − 𝑎𝑟𝑔(𝑧) = −𝑎𝑟𝑔(𝑧) 

When |𝑧| = 1,  𝑧 can be written as  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃, so that 

 
1

𝑧
= 𝑐𝑜𝑠(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃) = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 = 𝑧∗ 
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(14**) Find (1 + 𝑖)10 by considering rotations and magnifications 

in the Argand diagram 

Solution 

arg(1 + 𝑖) =
𝜋

4
  &  |1 + 𝑖| = √2 

So (1 + 𝑖)2 = 2𝑒
2(

𝜋

4
)𝑖

= 2𝑒
𝜋𝑖

2 = 2𝑖 

Then multiplication by (1 + 𝑖)8 results in a magnification of 

(√2)
8

= 16  and rotation of  8 (
𝜋

4
) = 2𝜋; ie no change 

So  (1 + 𝑖)10 = (2𝑖)(16) = 32𝑖 

[Or  (1 + 𝑖)10 = (√2𝑒
𝜋𝑖

4 )
10

= 32𝑒
10𝜋𝑖

4 = 32𝑒
5𝜋𝑖

2 = 32𝑒
𝜋𝑖

2 = 32𝑖] 

 

(15*) Show that, if 𝜔 is an 𝑛𝑡ℎ  root of unity, then 𝜔𝑟 is also 

(where 𝑛 & 𝑟  are positive integers). 

Solution 

(𝜔𝑟)𝑛 = 𝜔𝑟𝑛 = (𝜔𝑛)𝑟 = 1𝑟 = 1  

 

(16**) Find the equation of the line satisfying 

 |𝑧 + 10| = |𝑧 − 6 − 4𝑖√2| 

Solution 

Squaring both sides, (𝑥 + 10)2 + 𝑦2 = (𝑥 − 6)2 + (𝑦 − 4√2)2 

⇒ 20𝑥 + 100 = −12𝑥 + 36 − 8√2𝑦 + 32  

⇒ 8√2𝑦 = −32𝑥 − 32  

⇒ 𝑦 = −2√2𝑥 − 2√2  
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(17**) Find arg {−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
)} , other than by just plotting 

the point in the Argand diagram. 

Solution 

Approach 1  

−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
) = 𝑠𝑖𝑛 (−

𝜋

3
) + 𝑖𝑐𝑜𝑠 (−

𝜋

3
)  

[note that it helps to keep the angle the same in both terms] 

= 𝑐𝑜𝑠 (
𝜋

2
− [−

𝜋

3
]) + 𝑖𝑠𝑖𝑛 (

𝜋

2
− [−

𝜋

3
]) = cos (

5𝜋

6
) + 𝑖𝑠𝑖𝑛(

5𝜋

6
)  

So  arg {−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
)} =

5𝜋

6
 

Approach 2 

−𝑠𝑖𝑛 (
𝜋

3
) + 𝑖𝑐𝑜𝑠 (

𝜋

3
) = − cos (

𝜋

2
−

𝜋

3
) + 𝑖𝑠𝑖𝑛 (

𝜋

2
−

𝜋

3
)  

= −𝑐𝑜𝑠 (
𝜋

6
) + 𝑖𝑠𝑖𝑛 (

𝜋

6
) = −{𝑐𝑜𝑠 (

𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
)}  

Then  𝑎𝑟𝑔 {𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
)} = −

𝜋

6
   

[as  𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
) is the conjugate of  𝑐𝑜𝑠 (

𝜋

6
) + 𝑖𝑠𝑖𝑛 (

𝜋

6
); 

also 𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
) = 𝑐𝑜𝑠 (−

𝜋

6
) + 𝑖𝑠𝑖𝑛 (−

𝜋

6
)], 

and so  arg [− {𝑐𝑜𝑠 (
𝜋

6
) − 𝑖𝑠𝑖𝑛 (

𝜋

6
)}] = −

𝜋

6
+ 𝜋 =

5𝜋

6
 

[since multiplication by −1 is a rotation by 𝜋  in the Argand 

diagram] 
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(18***) Find the mod and arg of   𝑒
7𝜋𝑖

10 − 𝑒−
9𝜋𝑖

10    

Solution 

Method 1 

Write   𝑧 = 𝑒
7𝜋𝑖

10 − 𝑒−
9𝜋𝑖

10   in the form 𝑒𝑎𝜋𝑖(𝑒𝑏𝜋𝑖 − 𝑒−𝑏𝜋𝑖) 

So  𝑎 + 𝑏 =
7

10
 & 𝑎 − 𝑏 = −

9

10
 

Then  𝑎 = −
1

10
  &  𝑏 =

8

10
 

and  𝑒
7𝜋𝑖

10 − 𝑒−
9𝜋𝑖

10   = 𝑒−
𝜋𝑖

10(𝑒
8𝜋𝑖

10 − 𝑒−
8𝜋𝑖

10 ) 

= 𝑒−
𝜋𝑖

10(2𝑖𝑠𝑖𝑛 (
4𝜋

5
))  

Then  |𝑧| = |𝑒−
𝜋𝑖

10| |2𝑖𝑠𝑖𝑛 (
4𝜋

5
)| = (1)(2𝑠𝑖𝑛 (

4𝜋

5
)) 

= 2 sin (𝜋 −
4𝜋

5
) = 2sin (

𝜋

5
)  

and  arg(𝑧) = arg (𝑒−
𝜋𝑖

10) + arg (2𝑖𝑠𝑖𝑛 (
4𝜋

5
)) 

= −
𝜋

10
+

𝜋

2
=

4𝜋

10
=

2𝜋

5
  

 

Method 2 

𝑒
7𝜋𝑖

10 − 𝑒−
9𝜋𝑖

10   

= (𝑐𝑜𝑠 (
7𝜋

10
) − 𝑐𝑜𝑠 (

−9𝜋

10
)) + 𝑖 (𝑠𝑖𝑛 (

7𝜋

10
) − 𝑠𝑖𝑛 (

−9𝜋

10
))  

= −2𝑠𝑖𝑛 (
1

2
(

7𝜋

10
+

−9𝜋

10
)) 𝑠𝑖𝑛 (

1

2
(

7𝜋

10
−

−9𝜋

10
))  

+2𝑐𝑜𝑠 (
1

2
(

7𝜋

10
+

−9𝜋

10
)) 𝑠𝑖𝑛 (

1

2
(

7𝜋

10
−

−9𝜋

10
))  
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= −2𝑠𝑖𝑛 (−
𝜋

10
) 𝑠𝑖𝑛 (

8𝜋

10
) + 2𝑖𝑐𝑜𝑠 (−

𝜋

10
) 𝑠𝑖𝑛 (

8𝜋

10
)  

= 2𝑠𝑖𝑛 (
8𝜋

10
) {𝑠𝑖𝑛 (

𝜋

10
) + 𝑖𝑐𝑜𝑠 (

𝜋

10
)}  

= 2𝑠𝑖𝑛 (
4𝜋

5
) {𝑐𝑜𝑠 (

𝜋

2
−

𝜋

10
) + 𝑖𝑠𝑖𝑛 (

𝜋

2
−

𝜋

10
)}  

= 2𝑠𝑖𝑛 (
𝜋

5
) {𝑐𝑜𝑠 (

4𝜋

10
) + 𝑖𝑠𝑖𝑛 (

4𝜋

10
)}  

= 2𝑠𝑖𝑛 (
𝜋

5
) 𝑒

2𝜋𝑖

5    

So mod is 2𝑠𝑖𝑛 (
𝜋

5
)  and arg  is 

2𝜋

5
 

 

(19**)  Find  𝑖𝑖  in cartesian form (ie 𝑥 + 𝑦𝑖) 

Solution 

𝑖𝑖 = (𝑒𝑖(
𝜋

2
+2𝑘𝜋))

𝑖

= 𝑒−(
𝜋

2
+2𝑘𝜋)  for 𝑘 ∈ ℤ 

(ie 𝑖𝑖  is a collection of real numbers) 

 

(20**) How are the complex numbers  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  and 

 𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃  related? 

Solution 

𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃 = cos (
𝜋

2
− 𝜃) + 𝑖𝑠𝑖𝑛(

𝜋

2
− 𝜃)   

As both complex numbers have a modulus of 1, 𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃  is 

the reflection of  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  in the line  Re = Im (see diagram 

below). 
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