Complex Numbers – Q9 – Practice/Y2/H (22/5/21)

Consider two roots of $z^n = cos\theta + isin\theta$:

$$z_r = \cos\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right)$$

and $z_R = \cos\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right)$

(i) Find the condition on *n* for z_R to equal $-z_r$ for some *R*, and find *R* in terms of *r*.

(ii) Find the condition on θ for z_R to be the conjugate of z_r for some R, and find R in terms of r.

Consider two roots of $z^n = cos\theta + isin\theta$:

$$z_r = \cos\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2\pi r}{n}\right)$$

and $z_R = \cos\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2\pi R}{n}\right)$

(i) Find the condition on *n* for z_R to equal $-z_r$ for some *R*, and find *R* in terms of *r*.

(ii) Find the condition on θ for z_R to be the conjugate of z_r for some R, and find R in terms of r.

Solution

(i)
$$\frac{\theta}{n} + \frac{2\pi R}{n} = \frac{\theta}{n} + \frac{2\pi r}{n} \pm \pi$$

 $\Rightarrow 2R = 2r \pm n$
 $\Rightarrow R = r \pm \frac{n}{2}$

So *n* has to be even.

(ii)
$$\frac{\theta}{n} + \frac{2\pi R}{n} = -(\frac{\theta}{n} + \frac{2\pi r}{n})$$

 $\Rightarrow 2\pi R = -2\theta - 2\pi r$
 $\Rightarrow R = -\frac{\theta}{\pi} - r$

So θ has to be either 0 or π (ie a = $cos\theta$ + $isin\theta$ has to be real,

so that $z^n - a = 0$ has real coefficients)

If $\theta = 0$, then R = -r, and if $\theta = \pi$, then R = -1 - r

Example 1: $z^n = 1 = \cos 0$, $+i\sin 0$ $z_r = \cos \left(\frac{0}{n} + \frac{2\pi r}{n}\right) + i\sin \left(\frac{0}{n} + \frac{2\pi r}{n}\right)$ And if R = -r, $z_R = \cos \left(\frac{0}{n} - \frac{2\pi r}{n}\right) + i\sin \left(\frac{0}{n} - \frac{2\pi r}{n}\right) = z_r^*$

Example 2:
$$z^n = -1 = \cos \pi$$
, $+i\sin \pi$
 $z_r = \cos\left(\frac{\pi}{n} + \frac{2\pi r}{n}\right) + i\sin\left(\frac{\pi}{n} + \frac{2\pi r}{n}\right)$
And if $R = -1 - r$, $z_R = \cos\left(\frac{\pi}{n} - \frac{2\pi}{n} - \frac{2\pi r}{n}\right) + i\sin\left(\frac{\pi}{n} - \frac{2\pi}{n} - \frac{2\pi r}{n}\right)$
 $= \cos\left(-\frac{\pi}{n} - \frac{2\pi r}{n}\right) + i\sin\left(-\frac{\pi}{n} - \frac{2\pi r}{n}\right) = z_r^*$