Complex Numbers - Q9 - Practice/Y2/H (22/5/21)

Consider two roots of $z^{n}=\cos \theta+i \sin \theta$:
$z_{r}=\cos \left(\frac{\theta}{n}+\frac{2 \pi r}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi r}{n}\right)$
and $z_{R}=\cos \left(\frac{\theta}{n}+\frac{2 \pi R}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi R}{n}\right)$
(i) Find the condition on n for z_{R} to equal $-z_{r}$ for some R, and find R in terms of r.
(ii) Find the condition on θ for z_{R} to be the conjugate of z_{r} for some R, and find R in terms of r.

Consider two roots of $z^{n}=\cos \theta+i \sin \theta$:
$z_{r}=\cos \left(\frac{\theta}{n}+\frac{2 \pi r}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi r}{n}\right)$
and $z_{R}=\cos \left(\frac{\theta}{n}+\frac{2 \pi R}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi R}{n}\right)$
(i) Find the condition on n for z_{R} to equal $-z_{r}$ for some R, and find R in terms of r.
(ii) Find the condition on θ for z_{R} to be the conjugate of z_{r} for some R, and find R in terms of r.

Solution

(i) $\frac{\theta}{n}+\frac{2 \pi R}{n}=\frac{\theta}{n}+\frac{2 \pi r}{n} \pm \pi$
$\Rightarrow 2 R=2 r \pm n$
$\Rightarrow R=r \pm \frac{n}{2}$
So n has to be even.
(ii) $\frac{\theta}{n}+\frac{2 \pi R}{n}=-\left(\frac{\theta}{n}+\frac{2 \pi r}{n}\right)$
$\Rightarrow 2 \pi R=-2 \theta-2 \pi r$
$\Rightarrow R=-\frac{\theta}{\pi}-r$
So θ has to be either 0 or π (ie $\mathrm{a}=\cos \theta+i \sin \theta$ has to be real, so that $z^{n}-a=0$ has real coefficients)

If $\theta=0$, then $R=-r$, and if $\theta=\pi$, then $R=-1-r$

Example 1: $z^{n}=1=\cos 0,+i \sin 0$
$z_{r}=\cos \left(\frac{0}{n}+\frac{2 \pi r}{n}\right)+i \sin \left(\frac{0}{n}+\frac{2 \pi r}{n}\right)$
And if $R=-r, z_{R}=\cos \left(\frac{0}{n}-\frac{2 \pi r}{n}\right)+i \sin \left(\frac{0}{n}-\frac{2 \pi r}{n}\right)=z_{r}{ }^{*}$

Example 2: $z^{n}=-1=\cos \pi,+i \sin \pi$
$z_{r}=\cos \left(\frac{\pi}{n}+\frac{2 \pi r}{n}\right)+i \sin \left(\frac{\pi}{n}+\frac{2 \pi r}{n}\right)$
And if $R=-1-r, z_{R}=\cos \left(\frac{\pi}{n}-\frac{2 \pi}{n}-\frac{2 \pi r}{n}\right)+i \sin \left(\frac{\pi}{n}-\frac{2 \pi}{n}-\frac{2 \pi r}{n}\right)$
$=\cos \left(-\frac{\pi}{n}-\frac{2 \pi r}{n}\right)+i \sin \left(-\frac{\pi}{n}-\frac{2 \pi r}{n}\right)=z_{r}{ }^{*}$

