## Complex Numbers Q22 - Practice/M (29/5/23)

Points representing the 3 roots of the equation $z^{3}+z^{2}-7 z-15=0$ are plotted on an Argand diagram.

Given that one of the roots is an integer, find the area of the triangle that has these 3 points as its vertices.

## Solution

Let $f(z)=z^{3}+z^{2}-7 z-15$
If $f(z)$ is to factorise, then we need only consider factors of 15 when applying the Factor theorem.
$f(1)=1+1-7-15=-20$
$f(-1)=-1+1+7-15=-8$
$f(3)=27+9-21-15=0$
Thus $z-3$ is a factor, and we can write $z^{3}+z^{2}-7 z-15=(z-3)\left(z^{2}+4 z+5\right)$

The roots are therefore $3 \& \frac{-4 \pm \sqrt{16-20}}{2}=-2 \pm i$
The area of the triangle is thus $\frac{1}{2}(5)(2)=5$ sq. units.

