Complex Numbers Q21 - Practice/M (13/12/22)
(i) Show geometrically that
$\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
When is there equality?
(ii) Show geometrically, and also from (i) that
$\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
When is there equality?

Solution
(i)

Referring to the diagram, $\left|z_{1}+z_{2}\right|$ is the length OC, whilst $\left|z_{1}\right|$ and $\left|z_{2}\right|$ are the lengths AC and OA. As $O C \leq O A+A C$, the required result follows.

If $z_{2}=k z_{1}$ (so that $z_{1} \& z_{2}$ have the same argument),
then $\left|z_{1}+z_{2}\right|=\left|(1+k) z_{1}\right|=(1+k)\left|z_{1}\right|$
and $\left|z_{1}\right|+\left|z_{2}\right|=\left|z_{1}\right|+k\left|z_{1}\right|=(1+k)\left|z_{1}\right|$
So there is equality when $z_{1} \& z_{2}$ have the same argument.
[Strictly speaking, we should also show that $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ means that $z_{2}=k z_{1}$, and this can be seen geometrically, by requiring A to lie on OC.]
(ii) Referring to the diagram again, $\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{1}\right|$ is the length BA.

Result to prove: $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$; ie $B A \geq O B-O A$, or $O B \leq O A+B A$, and this can be seen to be true from the diagram.

Alternatively, from (i): $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
or $\left|z_{1}\right| \geq\left|z_{1}+z_{2}\right|-\left|z_{2}\right|$
So let $z_{1}=u_{1}-u_{2}$ and $z_{2}=u_{2}$.
Then $\left|u_{1}-u_{2}\right| \geq\left|\left(u_{1}-u_{2}\right)+u_{2}\right|-\left|u_{2}\right|$
ie $\left|u_{1}-u_{2}\right| \geq\left|u_{1}\right|-\left|u_{2}\right|$,
which can be rewritten as $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$, as required.

Equality occurs when $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-\left|z_{2}\right|$;
ie $\left|z_{1}\right|=\left|z_{2}\right|+\left|z_{1}-z_{2}\right|$,
which is when $\left|z_{1}\right| \geq\left|z_{2}\right|$ and $z_{1}=k z_{2}$, so that $k \geq 1$.

