Complex Numbers Q20 - Practice/E (1/7/21)

Given that 2 - i is a root of the equation

 $z^4 - 6z^3 - 2z^2 + 50z - 75 = 0$, find the other roots.

Solution

Method 1

2 + i is another root (the conjugate of 2 - i)

Let the other two roots be $\alpha \& \beta$.

Then
$$(2 - i) + (2 + i) + \alpha + \beta = 6$$
; $\alpha + \beta = 2$

And
$$(2-i)(2+i)\alpha\beta = -75$$
; $5\alpha\beta = -75$; $\alpha\beta = -15$

So the roots $\alpha \& \beta$ satisfy $x^2 - 2x - 15 = 0$

 \Rightarrow $(x-5)(x+3) = 0 \Rightarrow x = 5$ or -3, and these are the remaining roots.

Method 2

2 + i is another root (the conjugate of 2 - i)

Write
$$z^4 - 6z^3 - 2z^2 + 50z - 75$$

$$=(z-[2-i])(z-[2+i])(z^2+bz+c)$$

$$=(z^2-4z+5)(z^2+bz+c),$$

as
$$(2-i) + (2+i) = 4$$
 and $(2-i)(2+i) = 2^2 + 1^2 = 5$

Then, equating coefficients,

$$c = -15$$
 and $[z^3:] - 6 = b - 4$, so that $b = -2$

[Check:
$$[z^2:] -2 = -15 - 4b + 5 \Rightarrow b = -2$$
]

Thus
$$z^4 - 6z^3 - 2z^2 + 50z - 75 = (z^2 - 4z + 5)(z^2 - 2z - 15)$$

And
$$z^2 - 2z - 15 = 0 \Rightarrow (z - 5)(z + 3) = 0 \Rightarrow z = 5$$
 or -3 , and these are the remaining roots.