Complex Numbers Q18- Practice/M (29/5/23)

Find $\arg \left\{-\sin \left(\frac{\pi}{3}\right)+i \cos \left(\frac{\pi}{3}\right)\right\}$

Solution

Approach 1

$-\sin \left(\frac{\pi}{3}\right)+i \cos \left(\frac{\pi}{3}\right)=\sin \left(-\frac{\pi}{3}\right)+i \cos \left(-\frac{\pi}{3}\right)$
[note that it helps to keep the angle the same in both terms]
$=\cos \left(\frac{\pi}{2}-\left[-\frac{\pi}{3}\right]\right)+i \sin \left(\frac{\pi}{2}-\left[-\frac{\pi}{3}\right]\right)=\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)$
So $\arg \left\{-\sin \left(\frac{\pi}{3}\right)+i \cos \left(\frac{\pi}{3}\right)\right\}=\frac{5 \pi}{6}$

Approach 2

$-\sin \left(\frac{\pi}{3}\right)+i \cos \left(\frac{\pi}{3}\right)=-\cos \left(\frac{\pi}{2}-\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{2}-\frac{\pi}{3}\right)$
$=-\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)=-\left\{\cos \left(\frac{\pi}{6}\right)-i \sin \left(\frac{\pi}{6}\right)\right\}$
Then $\arg \left\{\cos \left(\frac{\pi}{6}\right)-i \sin \left(\frac{\pi}{6}\right)\right\}=-\frac{\pi}{6}$
[as $\cos \left(\frac{\pi}{6}\right)-i \sin \left(\frac{\pi}{6}\right)$ is the conjugate of $\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)$;
also $\left.\cos \left(\frac{\pi}{6}\right)-i \sin \left(\frac{\pi}{6}\right)=\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right]$,
and so $\arg \left[-\left\{\cos \left(\frac{\pi}{6}\right)-i \sin \left(\frac{\pi}{6}\right)\right\}\right]=-\frac{\pi}{6}+\pi=\frac{5 \pi}{6}$
[since multiplication by -1 is a rotation by π in the Argand diagram]

Approach 3
$\arg \left\{-\sin \left(\frac{\pi}{3}\right)+i \cos \left(\frac{\pi}{3}\right)\right\}=\arg \left\{i\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right)\right\}$
$=\arg (i)+\frac{\pi}{3}=\frac{\pi}{2}+\frac{\pi}{3}=\frac{5 \pi}{6}$

