Clarifications - Pure (3 pages; 2/9/23)

(1) Codomain, image and range

See Pure/Functions - "Mappings \& Functions".
(2) Square root

The square root of 4 is ± 2, but $\sqrt{4}$ is (by convention) 2 ; ie the positive square root.
(3) Prime numbers

0 and 1 are not counted as prime numbers
A prime number can be defined as a number that has exactly 2 distinct factors (and factorisations can't involve 0).

Thus 0 has no factors.
For other numbers, 1 and the number itself will always be factors.
So 1 has only 1 distinct factor.
All other numbers are either prime or 'composite' (with more than 2 distinct factors).
(4) Whole numbers and Natural numbers

These are non-mathematical terms (much in the same way that a rectangle is called an oblong). It is probably best to refer instead to either \mathbb{Z} (positive \& negative integers, together with zero), \mathbb{Z}^{+} (positive integers) or \mathbb{Z}^{-}(negative integers).

Usually, Natural numbers are taken to be the positive integers, but sometimes zero is included as well (ie the non-negative integers).

In non-mathematical circles, the Whole numbers are usually taken to be the non-negative integers.
However, mathematicians tend to treat Whole numbers and Integers as being the same.
[(A) "A Mathematical Olympiad Primer" (Geoff Smith) [page 10]: the integers (\mathbb{Z}) are described as "the whole numbers (positive, negative and zero)".
(B) "Numbers \& Proofs" (RBJT Allenby) [page 2]: "The positive and negative whole numbers together with zero are usually referred to as the integers." [There is ambiguity here though as to whether zero counts as a whole number!]
(5) If $\cosh a=b$, then $a= \pm \operatorname{arcosh} b$ (rather than $\operatorname{arcosh} b$).
[In order for $y=\operatorname{arcosh} x$ to be a function (with only one possible y value for each x value), the domain of $y=\cosh x$ is limited to $x \geq 0$, before deriving the inverse function. Then
$y=\operatorname{arcosh} x$ is non-negative.]
By contrast, if $\sinh a=b$, then $a=\operatorname{arsinh} b$, as there is no horizontal overlap for the \sinh function (ie only one value of x such that $y=\sinh x$, for a given y), and therefore no problem with creating the inverse function.
(6) $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\operatorname{arcosh}\left(\frac{x}{a}\right)$ or $\ln \left(x+\sqrt{x^{2}-a^{2}}\right)$

However, beware that $\operatorname{arcosh}\left(\frac{x}{a}\right) \neq \ln \left(x+\sqrt{x^{2}-a^{2}}\right)$.
In fact, $\operatorname{arcosh}\left(\frac{x}{a}\right)=\ln \left(\frac{x}{a}+\sqrt{\left(\frac{x}{a}\right)^{2}-1}\right)$
$=\ln \left(\frac{1}{a}\left[x+\sqrt{x^{2}-a^{2}}\right]\right)$
$=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)-\ln a$,
so the two answers in (*) differ by a constant [We could write $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\operatorname{arcosh}\left(\frac{x}{a}\right)+c$ or $\left.\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+c_{1}\right]$

