Boolean Algebra - Exercises (Solutions) (6 pages; 16/7/15)

Demonstrate the following, using the rules of Boolean algebra (see below)

(1)
$$a \lor \sim [(\sim b \lor a) \land b] = 1$$

(2) $(a \lor b) \land (a \lor \sim b) = a$
(3) $\{a \lor (\sim b \land c)\} \land b = a \land b$
(4) $[a \land (b \lor c)] \lor \sim [\sim a \lor (b \land c)] = a$ [MEI, D2, June 2013, Q1]
(5) $(a \land b) \lor (\sim a \land \sim b) = (\sim a \lor b) \land (a \lor \sim b)$
[MEI, D2, June 2008, Q1]
(6) Show that $[(p \Rightarrow q) \land (\sim p \Rightarrow r)] \land \sim r \Rightarrow q$
[MEI, D2, June 2007, Q1]
(7) Given that the statements $(X \lor \sim Y) \Rightarrow Z$ and $\sim Z$ are both

(7) Given that the statements $(X \lor Y) \Rightarrow Z$ and $\sim Z$ are both true, show that *Y* is true. [MEI, D2, June 2012, Q1]

(8) Show that $[\sim (X \lor \gamma) \lor Z] \land (\sim Z) \Rightarrow Y$ [related to (7)]

Rules of Boolean algebra (See also "Logic: Implication")

Identity: $p \land 1 = p; p \lor 1 = 1; p \land 0 = 0; p \lor 0 = p$

Associative: $(p \lor q) \lor r = p \lor (q \lor r); (p \land q) \land r = p \land (q \land r)$

Commutative: $p \lor q = q \lor p$; $p \land q = q \land p$

Complement: ~ (~ p) = p; $p \lor (~ p) = 1$; $p \land (~ p) = 0$

Distributive: $p \land (q \lor r) = (p \land q) \lor (p \land r)$

$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

De Morgan: ~
$$(p \lor q) = (\sim p) \land (\sim q); \sim (p \land q) = (\sim p) \lor (\sim q)$$

Absorption:
$$p \land p = p; \quad p \lor p = p;$$

 $p \land (p \lor q) = p; \quad p \lor (p \land q) = p$

Solutions

Note: The = signs in the following solutions could all be written as either \equiv or \Leftrightarrow

(1)
$$a \lor \sim [(\sim b \lor a) \land b] = 1$$

LHS = $a \lor [\sim (\sim b \lor a) \lor \sim b]$ (De Morgan)
= $a \lor [(b \land \sim a) \lor \sim b]$ (De Morgan)
= $[a \lor (b \land \sim a)] \lor \sim b$ (Associative)
= $[(a \lor b) \land (a \lor \sim a)] \lor \sim b$ (Distributive)
= $[(a \lor b) \land 1] \lor \sim b$ (Complement)
= $(a \lor b) \lor \sim b$ (Identity)
= $a \lor (b \lor \sim b)$ (Associative)
= $a \lor 1$ (Complement)
= 1 (Identity)

(2)
$$(a \lor b) \land (a \lor \sim b) = a$$

LHS = $[(a \lor b) \land a] \lor [(a \lor b) \land \sim b]$ (Distributive)
= $a \lor [(a \lor b) \land \sim b]$ (Absorption)

 $= a \lor [(a \land \sim b) \lor (b \land \sim b)] \text{ (Distributive)}$ $= a \lor [(a \land \sim b) \lor 0] \text{ (Complement)}$ $= a \lor (a \land \sim b) \text{ (Identity)}$ = a (Absorption)

(3)
$$\{a \lor (\sim b \land c)\} \land b = a \land b$$

 $LHS = \{(a \lor \sim b) \land (a \lor c)\} \land b$
 $= \{(a \lor \sim b) \land b\} \land (a \lor c)$ (Associative & Commutative)
 $= \{(a \land b) \lor (\sim b \land b)\} \land (a \lor c)$ (Distributive)
 $= \{(a \land b) \lor 0\} \land (a \lor c)$ (Complement)
 $= (a \land b) \land (a \lor c)$ (Identity)
 $= \{a \land (a \lor c)\} \land b$ (Associative & Commutative)
 $= a \land b$ (Absorption)

$$(4) [a \land (b \lor c)] \lor \sim [\sim a \lor (b \land c)] = a \quad (A)$$

First of all, $\sim [\sim a \lor (b \land c)] = a \land \sim (b \land c) = a \land (\sim b \lor \sim c)$

 $= (a \land \sim b) \lor (a \land \sim c)$

Then aiming to obtain a collection of unions, which can then be rearranged by the Associativity rule:

 $a \land (b \lor c) = (a \land b) \lor (a \land c)$ [distributive rule]

So LHS of (A) = $(a \land b) \lor (a \land \sim b) \lor (a \land c) \lor (a \land \sim c)$

At this point, = $(a \land b) \lor (a \land \sim b)$ can be seen to equal *a* from a Venn diagram, and similarly for $(a \land c) \lor (a \land \sim c)$, giving the result of $a \lor a = a$

But if required to use Boolean algebra, then the distributive rule gives: $(a \land b) \lor (a \land \sim b) = a \land (b \lor \sim b) = a \land 1 = a$

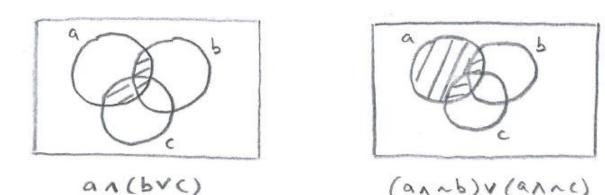
Alternatively, $[a \land (b \lor c)] \lor \sim [\sim a \lor (b \land c)] = a$ can be demonstrated using Venn Diagrams:

First of all, using Boolean algebra:

$$\sim [\sim a \lor (b \land c)] = a \land \sim (b \land c) = a \land (\sim b \lor \sim c)$$

= $(a \land \sim b) \lor (a \land \sim c)$, as before.

The LHS of (A) is then the union of the following 2 diagrams, and this can be seen to be a.



[Also, the mark scheme to MEI, D2, June 2013, Q1 gives a solution using a truth table.]

(5) $(a \land b) \lor (\sim a \land \sim b) = (\sim a \lor b) \land (a \lor \sim b)$ [MEI, D2, June 2008, Q1]

By the Distributive rule, LHS = $[(a \land b) \lor a] \land [(a \land b) \lor b]$

= $[(a \lor a) \land (b \lor a)] \land [(a \lor b) \land (b \lor b)]$ (applying the Distributive rule to each of the square brackets)

 $= (b \lor a) \land (a \lor b)$, which equals the RHS

[The mark scheme to MEI, D2, June 2008, Q1 gives a solution using a truth table.]

(6) Show that $[(p \Rightarrow q) \land (\sim p \Rightarrow r)] \land \sim r \Rightarrow q$ Using the contrapositive of $\sim p \Rightarrow r, \sim r \Rightarrow p$ Then LHS = $(p \Rightarrow q) \land (\sim r \Rightarrow p) \land \sim r$ (A) By 'modus ponens': $\sim r \land (\sim r \Rightarrow p) \Rightarrow p$

So (A) \Rightarrow ($p \Rightarrow q$) $\land p$

and, by 'modus ponens' again, $(p \Rightarrow q) \land p \Rightarrow q$, as required. [See "Logic: Nested Tables - Exs" for alternative approach.]

(7) Given that the statements $(X \lor Y) \Rightarrow Z$ and $\sim Z$ are both true, show that *Y* is true.

 $(X \lor \sim Y) \Rightarrow Z \equiv \sim Z \Rightarrow \sim (X \lor \sim Y)$ [Contrapositive]

As ~ *Z* is true, it follows that ~ ($X \lor Y$) is true

ie $\sim X \wedge Y$ is true [De Morgan]

so that *Y* is true

[It is also possible - though more time-consuming - to show that

 $[(X \lor Y) \Rightarrow Z] \land (\sim Z)$ is a subset of *Y*, by writing

 $(X \lor \sim Y) \Rightarrow Z \equiv \sim (X \lor \sim Y) \lor Z$

This is a good exercise in itself though and appears as Exercise (8).]

(8) Show that $[\sim (X \lor \sim Y) \lor Z] \land (\sim Z) \Rightarrow Y$

LHS $\equiv [(\sim X \land Y) \lor Z] \land (\sim Z)$ [De Morgan]

- $\equiv [(\sim X \lor Z) \land (Y \lor Z)] \land (\sim Z)$ [Distributive]
- $\equiv (\sim X \lor Z) \land [(Y \land \sim Z) \lor (Z \land \sim Z)] \text{ [Associative & Distributive]}$ $\equiv (\sim X \lor Z) \land (Y \land \sim Z)$
- \equiv (~ X \lor Z) \land Y \land ~ Z, which is a subset of Y, and hence \Rightarrow Y