Arithmetic Series - Q4 [Problem/E] (17/6/21)

For an arithmetic sequence with 1 st term a and common difference d, show that the sum of the 1 st n terms is $\frac{n}{2}[2 a+(n-1) d]$ by starting with $\sum_{k=1}^{n}[a+(k-1) d]$

Solution

$$
\begin{aligned}
& \sum_{k=1}^{n}[a+(k-1) d]=\left[(a-d) \sum_{k=1}^{n} 1\right]+d \sum_{k=1}^{n} k \\
& =(a-d) n+d \cdot \frac{1}{2} n(n+1) \\
& =\frac{n}{2}(2 a-2 d+d n+d)=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$

