Arithmetic Series Overview (17/6/21)

Q1 [Practice/E]

For each of the following arithmetic sequences, find an expression for a_{k} :
(a) in the form $a_{k}=p+q(k-1)$
(b) in the form $a_{k}=m k+c$
(c) in the form $a_{k}=a_{k-1}+t ; a_{1}=u \quad(k \geq 2)$
(where $p, q, m, c, t \& u$ are to be found)
(i) $4,7,10,13,16, \ldots$
(ii) $-2,-1,0,1,2, \ldots$
(iii) $8,6,4,2,0, \ldots$

Q2 [Practice/E]

If I pay $£ 50$ into a bank account, then $£ 60$ a year later, followed by $£ 70$ the following year, and so on, increasing by $£ 10$ each year, how long will it take for the amount in the bank account to reach £1000?

Q3 [Problem/M]

(i) If teams $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \& \mathrm{E}$ in some sporting competition have to play each other once, how many games are there in total?
(ii) Extend this to find a formula for $1+2+3+\cdots+n$

Q4 [Problem/E]

For an arithmetic sequence with 1 st term a and common difference d, show that the sum of the 1 st n terms is $\frac{n}{2}[2 a+(n-1) d]$ by starting with $\sum_{k=1}^{n}[a+(k-1) d]$

