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Vectors -  Shortest distances (14 pages; 4/8/18) 

(1) Shortest distance from a point to a plane 

(See "Vectors - Planes" to convert between the scalar product and 

parametric forms of the equation of a plane, if necessary.) 

Method 1 

Example 1 

Point, P is (
1
2
3
) ; plane has equation  4𝑥 + 3𝑦 − 12𝑧 = 26  (*) 

The position vector of the point in the plane at the shortest 

distance from P is: 

(
1
2
3
) + 𝜆 (

4
3

−12
)  for some 𝜆 (to be determined), as (

4
3

−12
) is the 

direction vector normal to the plane. 

Since this point lies in the plane, it satisfies (*); 

hence  4(1 + 4𝜆) + 3(2 + 3𝜆) − 12(3 − 12𝜆) = 26   (**) 

giving  𝜆 =
4

13
 

The shortest distance is the distance travelled from P to the plane, 

along the direction vector (
4
3

−12
); ie  

4

13
|(

4
3

−12
)| =

4

13
(13) = 4 

[Note: Had the direction vector been taken as  −(
4
3

−12
), then we 

would have 𝜆 = −
4

13
 and the shortest distance would be given as 

| −
4

13
| |−(

4
3

−12
)|  ] 
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(Alternatively, the point in the plane can be written as 

(
1
2
3
) +

𝜇

13
(

4
3

−12
),  where 

1

13
(

4
3

−12
) is a unit vector, and 𝜇 is found 

to be 4. Then the distance is just 4, as the point in the plane is 4 

lots of the unit vector away from P.] 

 

Example 2 

In the special case where P is the origin O (and the plane has 

equation  4𝑥 + 3𝑦 − 12𝑧 = 26  as before), (**) becomes 

4(4𝜆) + 3(3𝜆) − 12(−12𝜆) = 26   

ie 𝜆|𝑛|2 = 26, where 𝑛 is the normal to the plane, (
4
3

−12
) 

As before, the shortest distance from O to the plane is 

𝜆|𝑛| =
26

|𝑛|
=

26

13
= 2  

Alternatively, if the equation of the plane is given in 'normalised' 

form (ie the direction vector has unit magnitude; the word 

'normal' being used here in a different sense to that of the normal 

to a plane); 

ie 
4

13
𝑥 +

3

13
𝑦 −

12

13
𝑧 = 2,  then the distance required is simply the 

right-hand side of the equation. 

 

Method 2 

Using the above example, we can find the equation of the plane 

parallel to   4𝑥 + 3𝑦 − 12𝑧 = 26   and passing through (
1
2
3
). 
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The equation of the parallel plane will be   

4𝑥 + 3𝑦 − 12𝑧 = 4(1) + 3(2) − 12(3)  

ie  4𝑥 + 3𝑦 − 12𝑧 = −26 

From the special case of the Origin in Method 1, the distance 

between the two planes (and hence between the point and the 

plane) is 
26−(−26)

√42+32+(−12)2
=

52

13
= 4 

Note: This method gives rise to the standard formula: 

|𝑛1𝑝1+𝑛2𝑝2+𝑛3𝑝3−𝑑|

√𝑛1
2+𝑛2

2+𝑛3
2

  , as the shortest distance from the point (

𝑝1

𝑝2

𝑝3

) 

to the plane 𝑛1𝑥 + 𝑛2𝑦 + 𝑛3𝑧 = 𝑑 

[In this example, |𝑛1𝑝1 + 𝑛2𝑝2 + 𝑛3𝑝3 − 𝑑| = |(−26) − 26| 

= 26 − (−26)] 

Method 3a 

 

Using the same example, where P is (
1
2
3
) and the plane has 

equation  4𝑥 + 3𝑦 − 12𝑧 = 26  (*), 

we first of all find a point Q in the plane (as in the diagram above) 

and create the vector 𝑃𝑄⃗⃗⃗⃗  ⃗ 
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The required distance will then be the projection of  𝑃𝑄⃗⃗⃗⃗  ⃗ onto 𝑛 

(the normal to the plane); namely   
|𝑃𝑄⃗⃗ ⃗⃗  ⃗.𝑛|

|𝑛|
 

In this case, putting 𝑦 = 𝑧 = 0 (say) in (*) gives 𝑥 =
13

2
, so that  

𝑄 = (

13

2

0
0

) , and  𝑃𝑄⃗⃗⃗⃗  ⃗ = (

11

2

−2
−3

) 

Then  𝑃𝑄⃗⃗⃗⃗  ⃗. 𝑛 = (
11

2
) (4) + (−2)(3) + (−3)(−12) = 52 

and the shortest distance =
52

√42+32+(−12)2
=

52

13
= 4 

 

Method 3b 

With the same example, a variation on method 3a is to replace Q 

with a general point R, as in the diagram below. 

 

Then |𝑃𝐴| = |𝑃𝑅⃗⃗⃗⃗  ⃗. �̂�|, where �̂� is a unit normal to the plane, 

ie �̂� =
1

√16+9+144
(

4
3

−12
) =

1

13
(

4
3

−12
)  

(the direction could be reversed) 
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So  |𝑃𝐴| = |(𝒓 − (
1
2
3
)) .

1

13
(

4
3

−12
)| 

= |𝒓.
1

13
(

4
3

−12
) − (

1
2
3
) .

1

13
(

4
3

−12
) | 

= |
26

13
−

1

13
(−26)|     

= 4  

 

(2) Distance between two parallel planes 

Using the method for finding the shortest distance from the Origin 

to a plane (Method 1, Example 2 of "Shortest distance from a 

point to a plane"), the two planes need first of all to be put into 

normalised form; the constant term of each equation then gives 

the distance of the plane from the origin, so that the distance 

between the planes is then the difference between the constant 

terms. 

Example: Find the distance between the planes  

3𝑥 + 4𝑦 + 12𝑧 = 13  and  3𝑥 + 4𝑦 + 12𝑧 = 39 

As  √32 + 42 + 122 = 13, the normalised equations are 

1

13
(3𝑥 + 4𝑦 + 12𝑧) = 1  and   

1

13
(3𝑥 + 4𝑦 + 12𝑧) = 3   

so that the distance between the planes is  3 − 1 = 2 

 

 

 



 fmng.uk 

6 
 

(3) Distance between parallel lines / shortest distance from a 

point to a line 

Assuming that A and B are given points on the two lines, and that 

𝑑 is the common direction vector: 

 

 

Method 1 

Let C be the point on 𝑙1 with parameter 𝑘, so that 𝑐 = 𝑎 + 𝑘𝑑 (*) 

Then we require  𝑑. (𝑐 − 𝑏) = 0 

Solving this equation for 𝑘 and substituting for 𝑘 in (*) gives 𝑐, 

and the distance between the two lines is then |𝑐 − 𝑏|. 

Example 

Let lines be 𝑟 = (
1
0
2
) + 𝜆 (

3
−1
1

)  and  𝑟 = (
−2
−1
−1

) + 𝜆 (−
3
1
1
) 

If  𝑎 = (
1
0
2
)  ,  𝑏 = (

−2
−1
−1

)  and  𝑐 = (
1
0
2
) + 𝑘 (−

3
1
1
), 

then (
3

−1
1

) . (
1 + 3𝑘 + 2

−𝑘 + 1
2 + 𝑘 + 1

) = 0 → 9 + 9𝑘 + 𝑘 − 1 + 𝑘 + 3 = 0 

→ 11𝑘 + 11 = 0 → 𝑘 = −1  
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Hence  𝑐 = (
−2
1
1

)   and the distance between the lines is  

√(−2 + 2)2 + (1 + 1)2 + (1 + 1)2 = √8  

 

Method 2 

Having obtained the general point,  𝐶 = (
1 + 3𝑘

−𝑘
2 + 𝑘

)  on 𝑙1 in 

Method 1, we can minimise the distance BC by finding the 

stationary point of  either 𝐵𝐶 or 𝐵𝐶2: 

𝐵𝐶2 = (1 + 3𝑘 + 2)2 + (−𝑘 + 1)2 + (2 + 𝑘 + 1)2  

= 11𝑘2 + 22𝑘 + 19  

Then 
𝑑

𝑑𝑘
 (𝐵𝐶2) = 22𝑘 + 22 

and 
𝑑

𝑑𝑘
 (𝐵𝐶2) = 0 ⇒ 𝑘 = −1, as before 

 

Method 3 

As 𝐵𝐶 = 𝐴𝐵𝑠𝑖𝑛𝜃,  𝐵𝐶 =
|𝐴𝐵⃗⃗ ⃗⃗  ⃗×𝑑|

|𝑑|
 

In the above example, 𝐴𝐵⃗⃗⃗⃗  ⃗=(
−3
−1
−3

) and 𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝑑 = 

|

𝑖 −3 3

𝑗 −1 −1

𝑘 −3 1

| = −4𝑖 − 6𝑗 + 6𝑘 = −2(
2
3

−3
)  

Then 𝐵𝐶 =
2√4+9+9

√9+1+1
=

2√22

√11
= √8 



 fmng.uk 

8 
 

Method 4 

The line equivalent of the formula  
|𝑛1𝑏1+𝑛2𝑏2+𝑛3𝑏3−𝑑|

√𝑛1
2+𝑛2

2+𝑛3
2

  for the 

shortest distance from a point to a plane (see above) gives 

|𝑛1𝑏1+𝑛2𝑏2−𝑑|

√𝑛1
2+𝑛2

2
  as the shortest distance from the point 𝐵(𝑏1, 𝑏2) to 

the line  𝑛1𝑥 + 𝑛2𝑦 = 𝑑 

Proof 

The gradient of the line is  −
𝑛1

𝑛2
 , so that the unit direction vector 

of the line (in 3D) is  �̂� =
1

√𝑛1
2+𝑛2

2
(
−𝑛2

𝑛1

0
)   [× ±1] 

Let 𝐴 = (

𝑎𝑥

𝑎𝑦

0
) be any point on the line, and let C be the point on 

the line nearest to the point B (
𝑏1

𝑏2

0

) (as in the initial diagram). 

Then, by Method 3, BC = |𝐴𝐵⃗⃗⃗⃗  ⃗ × �̂�| 

=
1

√𝑛1
2+𝑛2

2
|(

𝑏1 − 𝑎𝑥

𝑏2 − 𝑎𝑦

0

) × (
−𝑛2

𝑛1

0
)|  

= |
1

√n1
2+n2

2
(

0
0

𝑛1(𝑏1 − 𝑎𝑥) + 𝑛2(𝑏2 − 𝑎𝑦)
)|  

=
𝑛1𝑏1+𝑛2𝑏2−𝑑−(𝑛1𝑎𝑥+𝑛2𝑎𝑦−𝑑)

√n1
2+n2

2
  

=
𝑛1𝑏1+𝑛2𝑏2−𝑑

√n1
2+n2

2
  , as required (as (

𝑎𝑥

𝑎𝑦
) lies on 𝑛1𝑥 + 𝑛2𝑦 = 𝑑) 
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(4) Shortest distance between two skew lines 

Method 1 

eg  𝑙1:   𝑟 = 𝑎 + λ𝑏    &  𝑙2:   𝑟 = 𝑐 + μ𝑑  ;   A has position vector 𝑎  

etc 

 

 

 

XY is shortest distance, as it is perpendicular to both 𝑙1 and 𝑙2 

[To see that the above configuration is sufficiently general: given 

any two skew lines, we can start by identifying the shortest 

distance XY; this forces 𝑙2 to be on the back face of the cuboid. 𝑙2 

can then have any direction in the plane of the back face, by 

changing the width and height of the cuboid.] 

unit vector in direction of XY is  
𝑏×𝑑

|𝑏×𝑑|
 

AE = XY  ;  ∠𝐶𝐸𝐴 = 90° (as CE is in the plane of the back face of 

the cuboid - because C lies on 𝑙2) 
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So AE is the projection of  𝑐 − 𝑎  onto the direction of XY; ie onto  
𝑏×𝑑

|𝑏×𝑑|
 

So XY = AE =  |(𝑐 − 𝑎).
(𝑏×𝑑)

|𝑏×𝑑|
|    (the modulus sign ensuring that the 

distance is +ve). 

 

Note 1: This method can't be used to find the distance between 

two parallel lines, as |𝑏 × 𝑑| = 0, since 𝑠𝑖𝑛𝜃 = 0 

Note 2: From the formula for XY, we can deduce that two lines in 

3D will intersect if    (𝑐 − 𝑎). (𝑏 × 𝑑) = 0 

 

Example 1a: To find the shortest distance between the lines 

𝑙1: 𝑟 = (
0

−2
0

) + 𝜆 (
2
2

−1
)  and  𝑙2: 𝑟 = (

−1
12
5

) + 𝜆 (
7

−14
4

) 

The direction normal to the two lines is  

𝑏 × 𝑑 = |

𝑖 2 7

𝑗 2 −14

𝑘 −1 4

| = (
−6
−15
−42

)  ; and we can take (
2
5
14

) instead 

As  √4 + 25 + 196 = 15, the unit vector in this direction is 

1

15
(

2
5
14

)  

We then require ((
0

−2
0

) − (
−1
12
5

)) .
1

15
(

2
5
14

) =
1

15
(

1
−14
−5

) . (
2
5
14

) 

=
1

15
(2 − 70 − 70) = −

138

15
= −

46

5
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so that the required distance is  
46

5
  or  9.2 

 

Method 2 

Find the vector perpendicular to both 𝑏 and 𝑑 , as in Method 1:  

𝑛 = 𝑏 × 𝑑 

Then the equation of the plane with normal 𝑛 , containing line 𝑙1 

(ie the front face of the cuboid in Method 1) will be  𝑟. 𝑛 = 𝑎. 𝑛 

Similarly the equation of the plane with normal 𝑛 , containing line 

𝑙2 (ie the back face of the cuboid) will be  𝑟. 𝑛 = 𝑐. 𝑛 

The distance between these two planes (ie XY) is obtained by first 

adjusting the equations of the planes, so that they are based on a 

normal vector of unit magnitude. 

Thus   
𝑟.𝑛

|𝑛|
=

𝑎.𝑛

|𝑛|
  and  

𝑟.𝑛

|𝑛|
=

𝑐.𝑛

|𝑛|
 

Then  𝑋𝑌 = |
𝑎.𝑛

|𝑛|
−

𝑐.𝑛

|𝑛|
|  [See Vectors "Distance between two 

parallel planes" above.] 

[Note that this method is algebraically equivalent to method 1.] 

 

Example 1b (Lines as in 1a) 

From Example 1a, 
𝑛

|𝑛|
=

1

15
(

2
5
14

)   

Then the equations of the planes in which the front and back faces 

of the cuboid in method 1 lie are 

1

15
(2𝑥 + 5𝑦 + 14𝑧) =

1

15
[2(0) + 5(−2) + 14(0)] = −

10

15
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and  
1

15
(2𝑥 + 5𝑦 + 14𝑧) =

1

15
[2(−1) + 5(12) + 14(5)] =

128

15
 

So the distance between the two planes, and hence between the 

two lines is  =
128−(−10)

15
=

138

15
=

46

5
= 9.2 

Method 3 

Referring to the earlier diagram, suppose that X and Y have 

position vectors  𝑟 = 𝑎 + 𝜆𝑋𝑏    &    𝑟 = 𝑐 + 𝜇𝑌𝑑  respectively. 

Then, if 𝑛  is a vector normal to both 𝑏 and 𝑑, 

𝑐 + 𝜇𝑌𝑑 = 𝑎 + 𝜆𝑋𝑏 + 𝑘𝑛  (*) 

(ie Y is reached by travelling first to X and then along XY)  and XY 

will then = 𝑘|𝑛| 

(*) gives 3 simultaneous equations in 𝜆, 𝜇 & 𝑘: 

(

𝑐1 + 𝜇𝑌𝑑1

𝑐2 + 𝜇𝑌𝑑2

𝑐3 + 𝜇𝑌𝑑3

) = (

𝑎1 + 𝜆𝑋𝑏1 + 𝑘𝑛1

𝑎2 + 𝜆𝑋𝑏2 + 𝑘𝑛2

𝑎3 + 𝜆𝑋𝑏3 + 𝑘𝑛3

)  , from which 𝑘 can be found 

 

Example 1c: (Lines as in 1a) 

From Example 1a,  𝑛 = (
2
5
14

) 

We need to find 𝑘 such that 

(
−1
12
5

) + 𝜇𝑌 (
7

−14
4

) = (
0

−2
0

) + 𝜆𝑋 (
2
2

−1
) + 𝑘 (

2
5
14

)  

 

So      7𝜇𝑌 − 2𝜆𝑋 − 2𝑘 = 1 

     −14𝜇𝑌 − 2𝜆𝑋 − 5𝑘 = −14  



 fmng.uk 

13 
 

          4𝜇𝑌 + 𝜆𝑋 − 14𝑘 = −5  

  

or (
7 −2 −2

−14 −2 −5
4 1 −14

)(

𝜇𝑌

𝜆𝑋

𝑘
) = (

1
−14
−5

) 

→ (

𝜇𝑌

𝜆𝑋

𝑘
) =

1

7(33) + 14(30) + 4(6)
(

. . .

. . .
−6 −15 −42

)(
1

−14
−5

) 

→ 𝑘 =
414

675
  

and  𝑋𝑌 =
414

675
× √4 + 25 + 196 = 9.2 

 

Method 4 

As in method 3,  suppose that X and Y have position vectors  𝑟 =

𝑎 + 𝜆𝑋𝑏    &   𝑟 = 𝑐 + 𝜇𝑌𝑑  respectively. 

Then  𝑋𝑌⃗⃗⃗⃗  ⃗ = 𝑐 + 𝜇𝑌𝑑 − (𝑎 + 𝜆𝑋𝑏) 

and  𝑋𝑌⃗⃗⃗⃗  ⃗. 𝑏 = 𝑋𝑌⃗⃗⃗⃗  ⃗. 𝑑 = 0  (*) 

Solving (*) enables 𝜆𝑋 & 𝜇𝑌  to be determined, 

from which |𝑋𝑌⃗⃗⃗⃗  ⃗| can be found 

 

Example 1d: (Lines as in 1a) 

 

𝑋𝑌⃗⃗⃗⃗  ⃗ = (
−1
12
5

) + 𝜇𝑌 (
7

−14
4

) − (
0

−2
0

) − 𝜆𝑋 (
2
2

−1
)  
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= (

−1 + 7𝜇𝑌 − 2𝜆𝑋

14 − 14𝜇𝑌 − 2𝜆𝑋

5 + 4𝜇𝑌 + 𝜆𝑋

)  

Then  (

−1 + 7𝜇𝑌 − 2𝜆𝑋

14 − 14𝜇𝑌 − 2𝜆𝑋

5 + 4𝜇𝑌 + 𝜆𝑋

) . (
2
2

−1
) = 0  

and  (

−1 + 7𝜇𝑌 − 2𝜆𝑋

14 − 14𝜇𝑌 − 2𝜆𝑋

5 + 4𝜇𝑌 + 𝜆𝑋

) . (
7

−14
4

) = 0 

→ −2 + 14𝜇𝑌 − 4𝜆𝑋 + 28 − 28𝜇𝑌 − 4𝜆𝑋 − 5 − 4𝜇𝑌 − 𝜆𝑋 = 0 

and 

−7 + 49𝜇𝑌 − 14𝜆𝑋 − 196 + 196𝜇𝑌 + 28𝜆𝑋 + 20 + 16𝜇𝑌 + 4𝜆𝑋  

= 0  

ie  → 21 − 18𝜇𝑌 − 9𝜆𝑋 = 0   or  7 − 6𝜇𝑌 − 3𝜆𝑋 = 0 

and  −183 + 261𝜇𝑌 + 18𝜆𝑋 = 0   or  −61 + 87𝜇𝑌 + 6𝜆𝑋 = 0 

or  (
−6 −3
87 6

) (
𝜇𝑌

𝜆𝑋
) = (

−7
61

) 

→ (
𝜇𝑌

𝜆𝑋
) =

1

−36+261
(

6 3
−87 −6

) (
−7
61

)  

=
1

225
(
141
243

) =
1

75
(
47
81

)  

Then 𝑋𝑌⃗⃗⃗⃗  ⃗ =  (

−1 + 7𝜇𝑌 − 2𝜆𝑋

14 − 14𝜇𝑌 − 2𝜆𝑋

5 + 4𝜇𝑌 + 𝜆𝑋

) =
1

75
(

92
230
644

) 

and |𝑋𝑌⃗⃗⃗⃗  ⃗| =
1

75
√476100 = 9.2 


